[1] B.S. Lane, K. Burgess, Metal-catalyzed epoxidations of alkenes with hydrogen peroxide, Chem. Rev. 103(2003) 2457-2473. [2] Y.H. Yi, L. Wang, G. Li, H.C. Guo, A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen:Noble-metal catalytic method, fuel-cell method and plasma method, Catal. Sci. Technol. 6(2016) 1593-1610. [3] N.M. Wilson, D.W. Flaherty, Mechanism for the direct synthesis of H2O2 on Pd clusters:Heterolytic reaction pathways at the liquid-solid interface, J. Am. Chem. Soc. 138(2016) 574-586. [4] M. Nugraha, M.C. Tsai, J. Rick, W.N. Su, H.L. Chou, B.J. Hwang, DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation, Appl. Catal. A-Gen. 547(2017) 69-74. [5] J.K. Edwards, S.J. Freakley, R.J. Lewis, J.C. Pritchard, G.J. Hutchings, Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen, Catal. Today 248(2015) 3-9. [6] N.M. Wilson, J. Schröder, P. Priyadarshini, D.T. Bregante, S. Kunz, D.W. Flaherty, Direct synthesis of H2O2 on PdZn nanoparticles:The impact of electronic modifications and heterogeneity of active sites, J. Catal. 368(2018) 261-274. [7] J.S. Kim, H.K. Kim, S.H. Kim, I. Kim, T. Yu, G.H. Han, K.Y. Lee, J.C. Lee, J.P. Ahn, Catalytically active au layers grown on Pd nanoparticles for direct synthesis of H2O2:Lattice strain and charge-transfer perspective analyses, ACS Nano 13(2019) 4761-4770. [8] S. Quon, D.Y. Jo, G.H. Han, S.S. Han, M.G. Seo, K.Y. Lee, Role of Pt atoms on Pd(11 1) surface in the direct synthesis of hydrogen peroxide:Nano-catalytic experiments and DFT calculations, J. Catal. 368(2018) 237-247. [9] S. Sterchele, P. Biasi, P. Centomo, P. Canton, S. Campestrini, T. Salmi, M. Zecca, Pd-Au and Pd-Pt catalysts for the direct synthesis of hydrogen peroxide in absence of selectivity enhancers, Appl. Catal. A Gen. 468(2013) 160-174. [10] J. Zhang, Q. Shao, Y. Zhang, S. Bai, Y. Feng, X. Huang, Promoting the direct H2O2 generation catalysis by using hollow Pd-Sn intermetallic nanoparticles, Small 14(2018), e1703990. [11] D. Ding, X. Xu, P. Tian, X. Liu, J. Xu, Y.F. Han, Promotional effects of Sb on Pd-based catalysts for the direct synthesis of hydrogen peroxide at ambient pressure, Chin. J. Catal. 39(2018) 673-681. [12] A. Santos, R.J. Lewis, G. Malta, A.G.R. Howe, D.J. Morgan, E. Hampton, P. Gaskin, G.J. Hutchings, Direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions, Ind. Eng. Chem. Res. 58(2019) 12623-12631. [13] S. Lee, Y.-M. Chung, An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2, Mater. Lett. 234(2019) 58-61. [14] P. Biasi, F. Menegazzo, P. Canu, F. Pinna, T.O. Salmi, Role of a functionalized polymer (K2621) and an inorganic material (Sulphated zirconia) as supports in hydrogen peroxide direct synthesis in a continuous reactor, Ind. Eng. Chem. Res. 52(2013) 15472-15480. [15] G.M. Lari, B. Puertolas, M. Shahrokhi, N. Lopez, J. Perez-Ramirez, Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis:The key role of the ligand, Angew. Chem.-Int. Edit. 56(2017) 1775-1779. [16] K. Mori, K. Furubayashi, S. Okada, H. Yamashita, Synthesis of Pd nanoparticles on heteropolyacid-supported silica by a photo-assisted deposition method:an active catalyst for the direct synthesis of hydrogen peroxide, RSC Adv. 2(2012) 1047-1054. [17] S. Park, D.R. Park, J.H. Choi, T.J. Kim, Y.M. Chung, S.H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over insoluble Cs2.5H0.5PW12O40 heteropolyacid supported on Pd/MCF, J. Mol. Catal. A-Chem. 332(2010) 76-83. [18] S. Park, T.J. Kim, Y.M. Chung, S.H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over insoluble Pd0.15M2.5H0.2PW12O40(M=K, Rb, and Cs) heteropolyacid catalysts, Res. Chem. Intermed. 36(2010) 639-646. [19] R.J. Lewis, J.K. Edwards, S.J. Freakley, G.J. Hutchings, Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide, Ind. Eng. Chem. Res. 56(2017) 13288-13294. [20] J.K. Edwards, S.F. Parker, J. Pritchard, M. Piccinini, S.J. Freakley, Q. He, A.F. Carley, C.J. Kiely, G.J. Hutchings, Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide, Catal. Sci. Technol. 3(2013) 812-818. [21] D. Kubicka, N. Kumar, T. Venalainen, H. Karhu, I. Kubickova, H. Osterholm, D.Y. Murzin, Metal-support interactions in zeolite-supported noble metals:influence of metal crystallites on the support acidity, J. Phys. Chem. B 110(2006) 4937-4946. [22] A. Masalska, Ni-loaded catalyst containing ZSM-5 zeolite for toluene hydrogenation, Appl. Catal. A Gen. 294(2005) 260-272. [23] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:A review, Appl. Catal. A Gen. 398(2011) 1-17. [24] B. Mitra, D. Kunzru, Disproportionation of toluene on monoliths washcoated with metal oxide modified ZSM5, Catal. Lett. 141(2011) 1569-1579. [25] B. Mitra, J.P. Chakraborty, D. Kunzru, Disproportionation of toluene on ZSM5 washcoated monoliths, AIChE J. 57(2011) 3480-3495. [26] S. Park, J. Lee, J.H. Song, T.J. Kim, Y.M. Chung, S.H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd/HZSM-5 catalysts:Effect of Bronsted acidity, J. Mol. Catal. A-Chem. 363(2012) 230-236. [27] G. Liu, Y. Tian, B. Zhang, L. Wang, X. Zhang, Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation, J. Hazard. Mater. 367(2019) 568-576. [28] S. Abelló, A. Bonilla, J. Pérez-Ramírez, Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching, Appl. Catal. A Gen. 364(2009) 191-198. [29] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461(2009) 246-U120. [30] Y. Tian, B. Zhang, H. Liang, X. Hou, L. Wang, X. Zhang, G. Liu, Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins, Appl. Catal. A Gen. 572(2019) 24-33. [31] W. Wannapakdee, D. Suttipat, P. Dugkhuntod, T. Yutthalekha, A. Thivasasith, P. Kidkhunthod, S. Nokbin, S. Pengpanich, J. Limtrakul, C. Wattanakit, Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets, Fuel 236(2019) 1243-1253. [32] S. Shetsiri, A. Thivasasith, K. Saenluang, W. Wannapakdee, S. Salakhum, P. Wetchasat, S. Nokbin, J. Limtrakul, C. Wattanakit, Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets, Sustainable Energy & Fuels 3(2019) 115-126. [33] W. Kim, R. Ryoo, Probing the catalytic function of external acid sites located on the MFI nanosheet for conversion of methanol to hydrocarbons, Catal. Lett. 144(2014) 1164-1169. [34] P. Biasi, N. Gemo, J.R.H. Carucci, K. Eranen, P. Canu, T.O. Salmi, Kinetics and mechanism of H2O2 direct synthesis over a Pd/C catalyst in a batch reactor, Ind. Eng. Chem. Res. 51(2012) 8903-8912. [35] F. Feng, L. Wang, X. Zhang, Q. Wang, Selective hydroconversion of oleic acid into aviation-fuel-range alkanes over ultrathin Ni/ZSM-5 nanosheets, Ind. Eng. Chem. Res. 58(2019) 5432-5444. [36] M. Firoozi, M. Baghalha, M. Asadi, The effect of micro and nano particle sizes of HZSM-5 on the selectivity of MTP reaction, Catal. Commun. 10(2009) 1582-1585. [37] B. Liu, Z. Chen, J. Huang, H. Chen, Y. Fang, Direct synthesis of hierarchically structured MFI zeolite nanosheet assemblies with tailored activity in benzylation reaction, Microporous Mesoporous Mat. 273(2019) 235-242. [38] D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, A. Peral, Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units, J. Mater. Chem. 18(2008) 4210. [39] A.A. Rownaghi, F. Rezaei, J. Hedlund, Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation, Microporous Mesoporous Mat. 151(2012) 26-33. [40] K.S. Triantafyllidis, A.G. Vlessidis, L. Nalbandian, N.P. Evmiridis, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Microporous Mesoporous Mat. 47(2001) 369-388. [41] H. Chen, Q. Wang, X. Zhang, L. Wang, Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides, Fuel 159(2015) 430-435. [42] H.J. Park, H.S. Heo, J.K. Jeon, J. Kim, R. Ryoo, K.E. Jeong, Y.K. Park, Highly valuable chemicals production from catalytic upgrading of radiata pine sawdustderived pyrolytic vapors over mesoporous MFI zeolites, Appl. Catal. B Environ. 95(2010) 365-373. [43] S. Zheng, H.R. Heydenrych, A. Jentys, J.A. Lercher, Influence of surface modification on the acid site distribution of HZSM-5?, J. Phys. Chem. B 106(2002) 9552-9558. [44] E.-M. El-Malki, R.A. van Santen, W.M.H. Sachtler, Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation:Identification of acid sites, J. Phys. Chem. B 103(1999) 4611-4622. [45] J. Zhuang, D. Ma, G. Yang, Z. Yan, X. Liu, X. Liu, X. Han, X. Bao, P. Xie, Z. Liu, Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking, J. Catal. 228(2004) 234-242. [46] Q. Liu, K.K. Gath, J.C. Bauer, R.E. Schaak, J.H. Lunsford, The active phase in the direct synthesis of H2O2 from H2 and O2 over Pd/SiO2 catalyst in a H2SO4/ethanol system, Catal. Lett. 132(2009) 342-348. [47] C. Liu, J. Liu, S. Yang, C. Cao, W. Song, Palladium nanoparticles encapsulated in a silicalite-1 zeolite shell for size-selective catalysis in liquid-phase solution, ChemCatChem 8(2016) 1279-1282. [48] J. Lyu, J. Wei, L. Niu, C. Lu, Y. Hu, Y. Xiang, G. Zhang, Q. Zhang, C. Ding, X. Li, Highly efficient hydrogen peroxide direct synthesis over a hierarchical TS-1 encapsulated subnano Pd/PdO hybrid, RSC Adv. 9(2019) 13398-13402. [49] L. Ouyang, P.F. Tian, G.J. Da, X.C. Xu, C. Ao, T.Y. Chen, R. Si, J. Xu, Y.F. Han, The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts:Interfaces of Pd and PdO domains, J. Catal. 321(2015) 70-80. [50] T. Otto, J.M. Ramallo-López, L.J. Giovanetti, F.G. Requejo, S.I. Zones, E. Iglesia, Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites, Journal of Catalysis 342(2016) 125-137. [51] S. Kim, D.W. Lee, K.Y. Lee, E.A. Cho, Effect of Pd particle size on the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd core-porous SiO2 shell catalysts, Catal. Lett. 144(2014) 905-911. [52] S. Park, J.C. Jung, J.G. Seo, T.J. Kim, Y.M. Chung, S.H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on SO3H-functionalized SiO2 and TiO2, Catal. Lett. 130(2009) 604-607. [53] M.N. Padilla-Serrano, F. Maldonado-Hodar, C. Moreno-Castilla, Influence of Pt particle size on catalytic combustion of xylenes on carbon aerogel-supported Pt catalysts, Appl. Catal. B-Environ. 61(2005) 253-258. [54] M.G. Seo, S. Kim, D.W. Lee, H.E. Jeong, K.Y. Lee, Core-shell structured, nano-Pd-embedded SiO2-Al2O3 catalyst (Pd@SiO2-Al2O3) for direct hydrogen peroxide synthesis from hydrogen and oxygen, Appl. Catal. A Gen. 511(2016) 87-94. [55] F. Wang, C.G. Xia, S.P. de Visser, Y. Wang, How does the oxidation state of palladium surfaces affect the reactivity and selectivity of direct synthesis of hydrogen peroxide from hydrogen and oxygen gases? A density functional study, J. Am. Chem. Soc. 141(2019) 901-910. |