[1] E. Butler, G. Devlin, K. McDonnell, Waste polyolefins to liquid fuels via pyrolysis:review of commercial state-of-the-art and recent laboratory research, Waste Biomass Valori 3(2011) 227-255. [2] Plastic Waste Management Institute (PWMI), An introduction to plastic recycling, Document available at:http://www.pwmi.or.jp/ei/plastic_recycling_2009.pdf 2009. [3] C. Berrueco, F.J. Mastral, E. Esperanza, J. Ceamanos, Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables, Energy Fuel 16(2002) 1148-1153. [4] M.D. Wallis, S.K. Bhatia, Thermal degradation of high density polyethylene in a reactive extruder, Polym Degrad Stabil 92(2007) 1721-1729. [5] N. Miskolczi, L. Barthaa, G. Deaka, B. Jover, Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons, Polym Degrad Stabil 86(2004) 357-366. [6] S.M. Al-Salem, P. Lettieri, Kinetic study of high density polyethylene (HDPE) pyrolysis, Chem. Eng. Res. Des. 88(2010) 1599-1606. [7] T. Ueno, E. Nakashima, K. Takeda, Quantitative analysis of random scission and chain-end scission in the thermal degradation of polyethylene, Polym Degrad Stabil 95(2010) 1862-1869. [8] G. Elordi, M. Olazar, G. Lopez, M. Artetxe, J. Bilbao, Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor, Ind. Eng. Chem. Res. 50(2011) 6650-6659. [9] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91(2010) 277-284. [10] X.D. Jing, G.X. Yan, Y.H. Zhao, H. Wen, Z.H. Xu, Study on mild cracking of polyolefins to liquid hydrocarbons in a closed batch reactor for subsequent olefin recovery, Polym Degrad Stabil 109(2014) 79-91. [11] X.D. Jing, G.X. Yan, Y.H. Zhao, H. Wen, Z.H. Xu, Cocracking kinetics of PE/PP and PE/hydrocarbon mixtures (I) PE/PP mixtures, Energy Fuel 28(2014) 5396-5405. [12] X.D. Jing, Y.H. Zhao, H. Wen, Z.H. Xu, Interactions between low-density polyethylene (LDPE) and polypropylene (PP) during the mild cracking of polyolefin mixtures in a closed-batch reactor, Energy Fuel 27(2013) 5841-5851. [13] G.X. Yan, X.D. Jing, H. Wen, S.G. Xiang, Thermal cracking of virgin and waste plastics of PP and LDPE in a semi-batch reactor under atmospheric pressure, Energy Fuel 29(2015) 2289-2298. [14] C. Ludlow-Palafox, H.A. Chase, Microwave-induced pyrolysis of plastic wastes, Ind. Eng. Chem. Res. 40(2001) 4749-4756. [15] A.D. Russell, E.I. Antreou, S.S. Lam, C. Ludlow-Palafoxa, H.A. Chase, Microwaveassisted pyrolysis of HDPE using an activated carbon bed, RSC Adv. 2(2012) 6756-6760. [16] M. Bhattacharya, T. Basak, A review on the susceptor assisted microwave processing of materials, Energy 97(2016) 306-338. [17] X.D. Jing, H. Wen, X.Z. Gong, Z.H. Xu, Heating strategies for the system of PP and spherical activated carbon during microwave cracking for obtaining value-added products, Fuel Process. Technol. 199(2020) 106265. [18] S.S. Lam, W.A.W. Mahari, Y.S. Ok, W.X. Peng, C.T.C. Chong, N.L. Ma, H.A. Chase, Z. Liew, S. Yusup, E.E. Kwon, D.C.W. Tsang, Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion:Recovery of cleaner liquid fuel and techno-economic analysis, Renew. Sust. Energ. Rev. 115(2019) 109359. [19] W.A.W. Mahari, C.T. Chong, W.H. Lam, T.N.S.T. Anuar, N.L. Ma, M.D. Ibrahim, S.S. Lam, Microwave co-pyrolysis of waste polyolefins and waste cooking oil:Influence of N2 atmosphere versus vacuum environment, Energ Convers Manage 171(2018) 1292-1301. [20] B. Zhang, Z.P. Zhong, T. Li, Z.Y. Xue, X.J. Wang, R. Ruan, Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst, J Anal Appl Pyrol 130(2018) 1-7. [21] L. Rosi, M. Bartoli, M. Frediani, Microwave assisted pyrolysis of halogenated plastics recovered from waste computers, Waste Manag. 73(2018) 511-522. [22] R.D. Leo, G. Cerri, V. Mariani, TLM techniques in microwave ovens analysis:Numerical and experimental results, Proceedings of the 1st International Conference on Computation in Electromagnetics, London 1991, pp. 361-364. [23] H. Chen, J. Tang, F. Liu, Simulation model for moving food packages in microwave heating processes using conformal FDTD method, J. Food Eng. 88(2008) 294-305. [24] P. Ratanadecho, K. Aoki, M. Akahori, A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties), Appl. Math. Model. 26(2002) 449-472. [25] W. Klinbun, P. Rattanadecho, Investigation into heat transfer and fluid flow characteristics of liquid two-layer and emulsion in microwave processing, Int Commun Heat Mass 70(2016) 115-126. [26] Q. Zhang, T.H. Jackson, A. Ungan, D. Gao, Numerical modeling of continuous hybrid heating of cryo-preserved tissue, Int J Heat Mass Tran 42(1991) 395-403. [27] J. Zhu, A. Kuznetsov, K. Sandeep, Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters), Int. J. Therm. Sci. 46(2007) 32-41. [28] J. Thomas, E. Nelson, J. Kares, R. Stringfield, Temperature distribution in a flowing fluid heated in a microwave resonant cavity, MRS-Proc (1996) 430. [29] W.D. Dai, T.L. Wang, H.C. Liu, Conductivity test and related factors test of activated carbon, Journal of Chemical Industry of Forest Products 6(1993) 23-25. [30] E. Antunesa, M.V. Jacoba, G. Brodiea, P.A. Schneidera, Microwave pyrolysis of sewage biosolids:Dielectric properties, microwave susceptor role and its impact on biochar properties, J Anal Appl Pyrol 129(2018) 93-100. [31] Y. Pianroj, S. Jumrat, W. Werapun, S. Karrila, C. Tongurai, Scaled-up reactor for microwave induced pyrolysis of oil palm shell, Chem. Eng. Process. 106(2016) 42-49. [32] J. Lasri, P.D. Ramesh, L. Schachter, Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor, J. Am. Ceram. Soc. 83(6) (2000) 1465-1468. [33] Z. Yaning, C. Yunlei, L. Shiyu, F. Liangliang, Z. Nan, P. Peng, W. Yunpu, G. Feiqiang, M. Min, C. Yanling, L. Yuhuan, L. Hanwu, C. Paul, L. Bingxi, R. Roger, Fast microwaveassisted pyrolysis of wastes for biofuels production-A review, Bioresour. Technol. 297(2020) 122480. [34] W. Cunzhou, Polymer Processing Thermodynamics, Chemical Industry Press, Beijing, 2011 p29. [35] D.J. Zou, X.W. Li, J.Q. Zhang, X.B. Zhan, L.Y. Feng, Study on a testing method and device fbr powder relative dielectric constant, Chinese Journal of Scientific Instrument 35(2) (2014) 368-373. [36] P. Rattanadecho, N. Suwannapum, W. Cha-um, Interactions between electromagnetic and thermal fields in microwave heating of hardened type I-cement paste using a rectangular waveguide, influence of frequency and sample size, J. Heat Transf. 131(8) (2009) 082101. [37] G. Qinghua, Electromagnetic Thermal Coupling Analysis Method Based on FDTD and its Application in Thermal Analysis of Microwave Devices, Master's degree thesis, Nanjing University of Science and Technology, 2012. (in Chinese). [38] X.D. Jing, Y.H. Zhao, H. Wen, Z.H. Xu, High olefin yield in pyrolysis of heavier hydrocarbon liquids using microwave as heat supplier, Energy Fuel 31(2017) 2052-2062. [39] J. Clemens, C. Saltiel, Numerical modeling of materials processing in microwave furnace, Int J Heat Mass Tran 39(1996) 1665-1675. [40] T. Santos, M.A. Valente, J. Monteiro, J. Sousa, L.C. Costa, Electromagnetic and thermal history during microwave heating, Appl. Therm. Eng. 31(2011) 3255-3261. [41] J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Microwave heating processes involving carbon materials, Fuel Process. Technol. 91(2010) 1-8. [42] H. Chen, J. Tang, F. Liu, Simulation model for moving food packages in microwave heating processes using conformal FDTD method, J. Food Eng. 88(2008) 294-305. |