[1] F.L. Theiss, G.A. Ayoko, R.L. Frost, Leaching of iodide (I-) and iodate (IO3-) anions from synthetic layered double hydroxide materials, J. Colloid. Interf. Sci. 478(2016) 311-315. [2] A. Marinoiu, I. Gatto, M. Raceanu, M. Varlam, C. Moise, A. Pantazi, C. Jianu, I. Stefanescu, M. Enachescu, Low cost iodine doped graphene for fuel cell electrodes, Int. J. Hydrogen. Energ. 42(2017) 26877-26888. [3] J. Yang, J. Zhang, X. Li, J. Zhou, Y. Li, Z. Wang, J. Cheng, Q. Guan, B. Wang, Single Janus iodine-doped rGO/rGO film with multi-responsive actuation and high capacitance for smart integrated electronics, Nano Energy 53(2018) 916-925. [4] D. Kinley, International Atomic Energy Agency, Chernobyl's Legacy:Health, environmental and socio-economic impacts and recommendations to the governments of Belarus, the Russian Federation and Ukraine, The Chernobyl Forum 54(2006) (2003-2005) 258. [5] V. Hansen, P. Yi, X. Hou, A. Aldahan, P. Roos, G. Possnert, Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak, Sci. Total Environ. 412(2011) 296-303. [6] T. Nenoff, J. Krumhansl, H. Gao, A. Rajan, K. McMahon, Iodine Waste Form Summary Report, SAND2007-6202, Sandia National Laboratory, Albuquerque, NM, 2007. [7] J.S. Hoskins, K. Tanju, S.M. Serkiz, Removal and sequestration of iodide using silverimpregnated activated carbon, Environ. Sci. Technol. 36(2002) 784-789. [8] X. Zhang, P. Gu, X. Li, G. Zhang, Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/cu modified activated carbon, Chem. Eng. J. 322(2017) 129-139. [9] F.L. Theiss, G.A. Ayoko, R.L. Frost, Iodide removal using LDH technology, Chem. Eng. J. 296(2016) 300-309. [10] Z. Haq, G.M. Bancroft, W.S. Fyfe, G. Bird, V.J. Lopata, Sorption of iodide on copper, Environ. Sci. Technol. 14(1980) 1106-1110. [11] Y. Tachibana, M. Nogami, M. Nomura, T. Suzuki, Simultaneous removal of various iodine species in aqueous solutions of high salt concentrations using novel functional adsorbents, J. Radioanal. Nucl. Chem. 307(2015) 1911-1918. [12] S. Liao, C. Xue, Y. Wang, J. Zheng, X. Hao, G. Guan, A. Abuliti, H. Zhang, G. Ma, Simultaneous separation of iodide and cesium ions from dilute wastewater based on PPy/PTCF and NiHCF/PTCF electrodes using electrochemically switched ion exchange method, Sep. Purif. Technol. 139(2015) 63-69. [13] M. Sancho, J. Arnal, G. Verdú, J. Lora, J. Villaescusa, Ultrafiltration and reverse osmosis performance in the treatment of radioimmunoassay liquid wastes, Desalination 201(2006) 207-215. [14] Y. Liu, P. Gu, L. Jia, G. Zhang, An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions, J. Hazard. Mater. 302(2016) 82-89. [15] P. Mao, Y. Liu, Y. Jiao, S. Chen, Y. Yang, Enhanced uptake of iodide on Ag@Cu2O nanoparticles, Chemosphere 164(2016) 396-403. [16] P. Mao, L. Qi, X. Liu, Y. Liu, Y. Jiao, S. Chen, Y. Yang, Synthesis of cu/Cu2O hydrides for enhanced removal of iodide from water, J. Hazard. Mater. 328(2017) 21-28. [17] X. Zhang, P. Gu, S. Zhou, X. Li, G. Zhang, L. Dong, Enhanced removal of iodide ions by nano Cu2O/cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption, Sci. Total Environ. 626(2018) 612-620. [18] G. Lefèvre, A. Walcarius, J.J. Ehrhardt, J. Bessière, Sorption of iodide on cuprite Cu2O, Langmuir 16(2000) 4519-4527. [19] G. Lefèvre, M. Alnot, J.J. Ehrhardt, J. Bessière, Uptake of iodide by a mixture of metallic copper and cupric compounds, Environ. Sci. Technol. 33(1999) 1732-1737. [20] G. Lefèvre, J. Bessière, J.J. Ehrhardt, A. Walcarius, Immobilization of iodide on copper (I) sulfide minerals, J. Environ. Radioactiv. 70(2003) 73-83. [21] Y. Wang, L. Liu, Y. Cai, J. Chen, J. Yao, Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films, Appl. Surf. Sci. 270(2013) 245-251. [22] S. Liu, N. Wang, Y. Zhang, Y. Li, Z. Han, P. Na, Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation, J. Hazard. Mater. 284(2015) 171-181. [23] L. Liu, W. Liu, X. Zhao, D. Chen, R. Cai, W. Yang, S. Komarneni, D. Yang, Selective capture of iodide from solutions by microrosette-like δ-Bi2O3, Acs. Appl. Mater. Inter. 6(2014) 16082-16090. [24] D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes, Angew. Chem. Int. Edit. 123(2011) 10782-10786. [25] S.D. Balsley, P.V. Brady, J.L. Krumhansl, H.L. Anderson, Iodide retention by metal sulfide surfaces:Cinnabar and chalcocite, Environ. Sci. Technol. 30(1996) 3025-3027. [26] W. Xu, W. Zhang, J. Kang, B. Li, Facile synthesis of mesoporous Fe-based MOFs loading bismuth with high speed adsorption of iodide from solution, J. Solid State Chem. 269(2019) 558-565. [27] P.H. Svensson, L. Kloo, Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems, Chem. Rev. 103(2003) 1649-1684. [28] D.K.L. Harijan, V. Chandra, T. Yoon, K.S. Kim, Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole, J. Hazard. Mater. 344(2018) 576-584. [29] X. Qian, Z.Q. Zhu, H.X. Sun, F. Ren, P. Mu, W. Liang, L. Chen, A. Li, Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units, ACS Appl. Mater. Inter. 8(2016) 21063-21069. [30] Y. Liao, J. Weber, B.M. Mills, Z. Ren, C.F.J. Faul, Highly efficient and reversible iodine capture in hexaphenylbenzene-based conjugated microporous polymers, Macromolecules 49(2016) 6322-6333. [31] B.J. Riley, D.A. Pierce, C. Jaehun, M. Josef, W.C. Lepry, T.G. Garn, J.D. Law, M.G. Kanatzidis, Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture, Environ. Sci. Technol. 48(2014) 5832-5839. [32] S. Sarkar, S. Dutta, C. Ray, B. Dutta, J. Chowdhury, T. Pal, A two-component hydrogelator from citrazinic acid and melamine:synthesis, intriguing role of reaction parameters and iodine adsorption study, Crystengcomm 17(2015) 8119-8129. [33] T. Geng, W. Zhang, Z. Zhu, X. Kai, Triazine-based conjugated microporous polymers constructing triphenylamine and its derivatives with nitrogen as core for iodine adsorption and fluorescence sensing I2, Micropor. Mesopor. Mat. 273(2019) 163-170. [34] X. Li, G. Chen, J. Ma, Q. Jia, Pyrrolidinone-based hypercrosslinked polymers for reversible capture of radioactive iodine, Sep. Purif. Technol. 210(2019) 995-1000. [35] X. Li, G. Chen, Q. Jia, One-pot synthesis of viologen-based hypercrosslinked polymers for efficient volatile iodine capture, Micropor. Mesopor. Mat. 279(2019) 186-192. [36] J. Stejskal, M. Trchová, N.V. Blinova, E.N. Konyushenko, S. Reynaud, J. Prokeš, The reaction of polyaniline with iodine, Polymer 49(2008) 180-185. [37] W.S. Hummers, R.E. Offeman, Preparation of graphene oxide, J. Am. Chem. Soc. 80(1958) 1339. [38] G.P. Jin, Y. Bo, Z.X. Chen, X.Y. Chen, Z. Ming, Z. Chang, Electrochemical behaviors and determination of melamine in neutral and acid aqueous media, J. Solid. State. Electr. 15(2011) 2653-2659. [39] L. Zhang, J. Lian, The electrochemical polymerization of o-phenylenediamine on ltyrosine functionalized glassy carbon electrode and its application, J. Solid. State. Electr. 12(2008) 757-763. [40] S.H. Si, Y.J. Xu, L.H. Nie, S.Z. Yao, Electrochemical quartz crystal microbalance study on electropolymerization of m-phenylenediamine:Effects of aniline and polyaniline, Electrochim. Acta 40(1995) 2715-2721. [41] S.R. Sivakkumar, R. Saraswathi, Application of poly (o-phenylenediamine) in rechargeable cells, J. App. Electrochem. 34(2004) 1147-1152. [42] Á. Molina, J. González, Pulse Voltammetry in Physical Electrochemistry and Electroanalysis, Springer, Cham, Springer International Publishing Switzerland, 2016229-316. [43] F.P. Chen, G.P. Jin, J.Y. Su, X. Feng, Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers, J. App. Electrochem. 46(2016) 379-388. [44] Y.J. Wei, C.G. Liu, L.P. Mo, Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion, Guang. Pu. Xue. Yu. Guang. Pu. Fen. Xi. Spectrosc. Spect. Annl. 25(2005) 86-88. [45] A.K. Vipin, B. Hu, B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water, J. Hazard. Mater. 258-259(2013) 93-101. [46] S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater. 274(2014) 46-52. [47] L. Ma, Y. Lin, W. Yan, J. Li, E. Wang, M. Qiu, Y. Ying, Aligned 2-D nanosheet Cu2O film:Oriented deposition on Cu foil and its photoelectrochemical property, J. Phys. Chem. C 112(2008) 18916-18922. [48] Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li, Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios, Nano Lett. 7(2007) 3723-3728. [49] I. Kosta, E. Azaceta, L. Yate, G. Cabañero, H. Grande, R. Tena-Zaera, Cathodic electrochemical deposition of CuI from room temperature ionic liquid-based electrolytes, Electrochem. Commun. 59(2015) 20-23. [50] W. Lyu, J. Wu, W. Zhang, Y. Liu, M. Yu, Y. Zhao, J. Feng, W. Yan, Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(Ⅲ), Chem. Eng. J. 363(2019) 107-119. [51] Y. Kong,W.Li, Z.Wang,C. Yao, Y.Tao,Electrosorptionbehavior ofcopper ions with poly (m-phenylenediamine) paper electrode, Electrochem. Commun. 26(2013) 59-62. [52] S.Y. Peng, G.P. Jin, J.-S. Cui, X.Y. Lv, Y.X. Yu, H.W. Tang, Preparation of nickel hexacyanoferrate/heterogeneous carbon composites for CO2 continuous electrocatalytic reduction to formic acid, J. Environ. Chem. Eng. 6(2018) 6931-6938. [53] P.L. Sang, Y.Y. Wang, L.Y. Zhang, L.Y. Chai, H.Y. Wang, Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism, T. Nonferr. Metal. Soc. 23(2013) 243-252. |