Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (4): 980-994.DOI: 10.1016/j.cjche.2020.01.007
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Yue Seong Ong, KuZilati KuShaari
Received:
2019-12-16
Revised:
2020-01-14
Online:
2020-07-27
Published:
2020-04-28
Contact:
Yue Seong Ong, KuZilati KuShaari
Supported by:
Yue Seong Ong, KuZilati KuShaari
通讯作者:
Yue Seong Ong, KuZilati KuShaari
基金资助:
Yue Seong Ong, KuZilati KuShaari. CFD investigation of the feasibility of polymer-based microchannel heat sink as thermal solution[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 980-994.
Yue Seong Ong, KuZilati KuShaari. CFD investigation of the feasibility of polymer-based microchannel heat sink as thermal solution[J]. 中国化学工程学报, 2020, 28(4): 980-994.
[1] I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink:The effect of channel design, Int. J. Heat Mass Transf. 107(2017) 21-44. [2] H.E. Ahmed, B.H. Salman, A.S. Kherbeet, M.I. Ahmed, Optimization of thermal design of heat sinks:A review, Int. J. Heat Mass Transf. 118(2018) 129-153. [3] B. Yang, P. Wang, A. Bar-Cohen, Mini-contact enhanced thermoelectric cooling of hot spots in high power devices, IEEE Transactions on Components and Packaging Technologies. 30(2007) 432-438. [4] H.Y. Li, M.H. Chiang, C.I. Lee, W.J. Yang, Thermal performance of plate-fin vapor chamber heat sinks, International Communications in Heat and Mass Transfer. 37(2010) 731-738. [5] Business communications company, bcc research. Available:https://www.bccresearch.com/market-research/semiconductor-manufacturing/thermal-management-technologies-market-smc024g.html [6] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for vlsi, IEEE Electron Device Letters. 3(1987) 126-129. [7] H.Y. Lee, Y.W. Jeong, J.H. Shin, J.H. Baek, M.K. Kang, K.J. Chun, Package embedded heat exchanger for stacked multi-chip module, Sensors Actuators A Phys. 114(2004) 204-211. [8] R.Y. Chein, J.H. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int. J. Therm. Sci. 48(2009) 1627-1638. [9] S.K. Das, C.S.U. S., H.E. Patel, Heat transfer in nanofluids-A review, Heat Transfer Engineering. 27(2006) 3-19. [10] H. Chen, et al., Thermal conductivity of polymer-based composites:Fundamentals and applications, Prog. Polym. Sci. 59(2016) 41-85. [11] A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, M.J. Sobkowicz, Review of polymers for heat exchanger applications:Factors concerning thermal conductivity, Appl. Therm. Eng. 113(2017) 1118-1127. [12] L. Zaheed, R.J.J. Jachuck, Review of polymer compact heat exchangers, with special emphasis on a polymer film unit, Appl. Therm. Eng. 24(2004) 2323-2358. [13] P. Naphon, S. Klangchart, S. Wongwises, Numerical investigation on the heat transfer and flow in the mini-fin heat sink for cpu, International Communications in Heat and Mass Transfer. 36(2009) 834-840. [14] P. Naphon, S. Wiriyasart, Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for cpu, International Communications in Heat and Mass Transfer. 36(2009) 166-171. [15] M. Marengo, S. Zhdanov, L. Chignoli, G.E. Cossali, Micro-Heat-Sinks for Space Applications, the ASME 2nd International Conference on Microchannels and Minichannels, 2004. [16] M.M. Rahman, F.L. Gui, Design, fabrication, and testing of microchannel heat sinks for aircraft avionics cooling, Proceedings of the 28th Intersociety Energy Conversion, Eng. Conf. 1(1993) 1-6. [17] A. Barba, B. Musi, M. Spiga, Performance of a polymeric heat sink with circular microchannels, Appl. Therm. Eng. 26(2006) 787-794. [18] W.L. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single phase microchannel heat sink, Int. J. Heat Mass Transf. 45(2002) 2549-2565. [19] R. Bahadur, A. Bar-Cohen, Thermal design and optimization of natural convection polymer pin fin heat sinks, IEEE Transactions on Components and Packaging Technologies. 28(2005) 238-246. [20] H. Jiang, J. Zhuang, Y. Liu, Z.L. Zhao, D.M. Wu, Quantitative analysis of factors influencing heat dissipation in a metal-plastic composite heat radiator with a hemispherical microstructure array, Math. Probl. Eng. 2015(2015) 1-6. [21] J. Zhuang, C.Q. Huang, G. Zhou, Z.M. Liu, et al., Influence of factors on heat dissipation performance of composite metal-polymer heat exchanger with rectangular microstructure, Appl. Therm. Eng. 102(2016) 1473-1480. [22] Y. Zhai, G. Xia, Z. Chen, Z. Li, Micro-piv study of flow and the formation of vortex in micro heat sinks with cavities and ribs, Int. J. Heat Mass Transf. 98(2016) 380-389. [23] G. Xia, Z. Chen, L. Cheng, D. Ma, Y. Zhai, Y. Yang, Micro-piv visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks, Int. J. Therm. Sci. 119(2017) 9-23. [24] P. Kim, K.W. Kwon, M.C. Park, H.L. Lee, S.M. Kim, K.Y. Suh, Soft lithography for microfluidics:A review, Biochip Journal. 2(2008) 1-11. [25] D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5(2010) 491-502. [26] N.P. Macdonald, J.M. Cabot, P. Smejkal, R.M. Guijt, B. Paull, M.C. Breadmore, Comparing microfluidic platform of three-dimensional (3d) printing platforms, Anal. Chem. 89(2017) 3858-3866. [27] X.H. Hao, Z.X. Wu, X.F. Chen, G.N. Xie, Numerical analysis and optimization on flow distribution and heat transfer of a u-type parallel channel heat sink, Advances in Mechanical Engineering. 7(2014) 1-11. [28] M.R. Hajmohammadi, P. Alipour, H. Parsa, Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks, Int. J. Heat Mass Transf. 126(2018) 808-815. [29] R.S. Vajjha, D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal of Heat and Mass Transfer 55(2012) 4063-4078. [30] L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids:A review, Renew. Sust. Energ. Rev. 25(2013) 670-686. [31] J.P. Meyer, S.A. Adio, M. Sharifpur, P.N. Nwosu, The viscosity of nanofluids-A review of the theoretical, emperical, and numerical models, Heat Transfer Engineering. 37(2015) 387-421. [32] I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transf. 55(2012) 874-885. [33] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Rheological behaviour of nanofluids-a review, Renew. Sust. Energ. Rev. 53(2016) 779-791. [34] M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (mchs) cooled by cu-water nanofluid using porous media approach and least square method, Energy Convers. Manag. 78(2014) 347-358. [35] B. Singh, M. Singh, H. Garg, I. Kaur, S. Suryavanshi, H. Kumar, Experimental and numerical analysis of micro-scale heat transfer using carbon based nanofluid in microchannel for enhanced thermal performance, IOP Conference Series:Materials Science and Engineering. 149(2016) 14-16. [36] A.A. Alfaryjat, H.A. Mohammed, N.M. Adam, D. Stanciu, A. Dobrovicescu, Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink, Thermal Science and Engineering Progress. 5(2018) 252-262. [37] J.E. Mark, Polymer Data Handbook, 2nd ed Oxford University Press, 2009. [38] M.A. Vadivelu, C.R. Kumar, G.M. Joshi, Polymer composites for thermal management:A review, Composite Interfaces. 23(2016) 847-872. [39] S.Y. Kwon, I.M. Kwon, Y.-G. Kim, S. Lee, Y.-S. Seo, A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena, Carbon. 55(2013) 285-290. [40] S.L. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, et al., Box-behnken design:An alternative for the optimization of analytical methods, Anal Chim Acta 597(2007) 179-186. [41] M. Mohammadi, G.N. Jovanovic, K.V. Sharp, Numerical study of flow uniformity and pressure characteristics within a microchannel array with triangular manifolds, Comput. Chem. Eng. 52(2013) 134-144. [42] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel wall, Phys. Fluids 14(2002) 9-12. [43] H. Ermagan, R. Rafee, Effect of pumping power on the thermal design of converging microchannels with superhydrophobic walls, Int. J. Therm. Sci. 132(2018) 104-116. [44] P. Roy, N.K. Anand, D. Banerjee, Liquid slip and heat transfer in rotating rectangular microchannels, Int. J. Heat Mass Transf. 62(2013) 184-199. [45] A. Sohankar, M. Riahi, E. Shirani, Numerical investigation of heat transfer and pressure drop in a rotating u-shaped hydrophobic microchannel with slip flow and temperature jump boundary conditions, Appl. Therm. Eng. 117(2017) 308-321. [46] J.H. Ryu, D.H. Choi, S.J. Kim, Numerical optimization of the thermal performance of a microchannel heat sink, Int. J. Heat Mass Transf. 45(2002) 2823-2827. [47] K.C. Toh, X.Y. Chen, J.C. Chai, Numerical computation of fluid flow and heattransfer in microchannels, Int. J. Heat Mass Transf. 45(2002) 5133-5141. [48] D. Liu, S.V. Garimella, Analysis and optimization of the thermal performance of microchannel heat sinks, International Journal of Numerical Methods for Heat & Fluid Flow. 15(2005) 7-26. [49] G. Shives, J. Norley, M. Smalc, G. Chen, J. Capp, Comparative thermal performance evaluation of graphite-epoxy fin heat sinks, 2004 Inter Society Conference on Thermal Performance 2004, pp. 410-417. |
[1] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[2] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[3] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[4] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[5] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[6] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[7] | Yongbo Zhou, Yang Jin, Jun Li, Qinyan Wang, Ming Chen. Numerical study on the hydrodynamics behavior of a central insert microchannel [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 361-373. |
[8] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[9] | Zewen Chen, Yongjun Wu, Jian Wang, Peicheng Luo. Study on the solid–liquid suspension behavior in a tank stirred by the long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 79-88. |
[10] | Liying Chen, Junheng Guo, Wenpeng Li, Shuchun Zhao, Wei Li, Jinli Zhang. A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 218-230. |
[11] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[12] | Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143-152. |
[13] | Ning Liu, Xingping Liu, Fumin Wang, Feng Xin, Mingshuai Sun, Yi Zhai, Xubin Zhang. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 219-228. |
[14] | Narjes Hemati Alam, Eslam Kashi, Razieh Habibpour. Computational fluid dynamics simulation of gas dispersion in complex facilities using Kit Fox field experiments: Validation and statistical evaluation [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 412-423. |
[15] | Shabnam Ghahremanian, Abbas Abbassi, Zohreh Mansoori, Davood Toghraie. Effect of copper nanoparticles on thermal behavior of two-phase argon-copper nanofluid flow in rough nanochannels with focusing on the interface properties and heat transfer using molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 344-350. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 82
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 383
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||