Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (6): 1701-1708.DOI: 10.1016/j.cjche.2020.01.009
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Yahui Wang1,2, Kaimin Feng1,2, Liming Ding1,3, Lihua Wang1, Xutong Han2
Received:
2019-08-28
Revised:
2019-12-25
Online:
2020-07-29
Published:
2020-06-28
Contact:
Lihua Wang, Xutong Han
Supported by:
Yahui Wang1,2, Kaimin Feng1,2, Liming Ding1,3, Lihua Wang1, Xutong Han2
通讯作者:
Lihua Wang, Xutong Han
基金资助:
Yahui Wang, Kaimin Feng, Liming Ding, Lihua Wang, Xutong Han. Influence of solvent on ion conductivity of polybenzimidazole proton exchange membranes for vanadium redox flow batteries[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1701-1708.
Yahui Wang, Kaimin Feng, Liming Ding, Lihua Wang, Xutong Han. Influence of solvent on ion conductivity of polybenzimidazole proton exchange membranes for vanadium redox flow batteries[J]. 中国化学工程学报, 2020, 28(6): 1701-1708.
[1] Q.T. Luo, H.M. Zhang, J. Chen, P. Qian, Y.F. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membr. Sci. 311(1-2) (2008) 98-103. [2] X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions, J. Membr. Sci. 341(1-2) (2009) 149-154. [3] X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery, J. Power Sources 189(2) (2009) 1240-1246. [4] Z.S. Mai, H.M. Zhang, X.F. Li, S.H. Xiao, H.Z. Zhang, Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application, J. Power Sources 196(13) (2011) 5737-5741. [5] M. Vijayakumar, B. Schwenzer, S. Kim, Z.G. Yang, S. Thevuthasan, J. Liu, G.L. Graff, J.Z. Hu, Investigation of local environments in Nafion-SiO2 composite membranes used in vanadium redox flow batteries, Solid State Nucl. Magn. Reson. 42(2012) 71-80. [6] X.G. Teng, C. Sun, J.C. Dai, H.P. Liu, J. Su, F.Q. Li, Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application, Electrochim. Acta 88(2013) 725-734. [7] X.B. Yang, L. Zhao, X.L. Sui, L.H. Meng, Z.B. Wang, Phosphotungstic acid immobilized nanofibers-Nafion composite membrane with low vanadium permeability and high selectivity for vanadium redox flow battery, J. Colloid Interface Sci. 542(2019) 177-186. [8] D.S. Zhang, Q. Wang, S.S. Peng, X.M. Yan, X.M. Wu, G.H. He, An interface-strengthened cross-linked graphene oxide/Nafion212 composite membrane for vanadium flow batteries, J. Membr. Sci. (2019) 587. [9] D.Y. Chen, S.J. Wang, M. Xiao, Y.Z. Meng, Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications, Energy Environ. Sci. 3(5) (2010) 622-628. [10] C. Fujimoto, S. Kim, R. Stains, X.L. Wei, L.Y. Li, Z.G. Yang, Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s, Electrochem. Commun. 20(2012) 48-51. [11] S. Kim, J.L. Yan, B. Schwenzer, J.L. Zhang, L.Y. Li, J. Liu, Z.G. Yang, M.A. Hickner, Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, Electrochem. Commun. 12(11) (2010) 1650-1653. [12] D.Y. Chen, S. Kim, L.Y. Li, G. Yang, M.A. Hickner, Stable fluorinated sulfonated poly (arylene ether) membranes for vanadium redox flow batteries, RSC Adv. 2(21) (2012) 8087-8094. [13] D.Y. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries, Electrochem. Commun. 26(2013) 37-40. [14] M.S.J. Jung, J. Parrondo, C.G. Arges, V. Ramani, Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the allvanadium redox flow battery, J. Mater. Chem. A 1(35) (2013) 10458-10464. [15] M. Hu, L. Ding, M.A. Shehzad, Q.Q. Ge, Y.H. Liu, Z.J. Yang, L. Wu, T.W. Xu, Combshaped anion exchange membrane with densely grafted short chains or loosely grafted long chains? J. Membr. Sci. 585(2019) 150-156. [16] F.X. Zhang, H.M. Zhang, C. Qu, Influence of solvent on polymer Prequaternization toward anion-conductive membrane fabrication for all-vanadium flow battery, J. Phys. Chem. B 116(30) (2012) 9016-9022. [17] H.Z. Zhang, H.M. Zhang, F.X. Zhang, X.F. Li, Y. Li, I. Vankelecom, Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application, Energy Environ. Sci. 6(3) (2013) 776-781. [18] D.S. Zhang, X.M. Yan, G.H. He, L. Zhang, X.H. Liu, F.X. Zhang, M.M. Hu, Y. Dai, S.S. Peng, An integrally thin skinned asymmetric architecture design for advanced anion exchange membranes for vanadium flow batteries, J. Mater. Chem. A 3(33) (2015) 16948-16952. [19] T.T. Li, X.M. Wu, W.T. Chen, X.M. Yan, D.X. Zhen, X. Gong, J.F. Liu, S.F. Zhang, G.H. He, Poly (ether ether ketone ketone) based imidazolium as anion exchange membranes for alkaline fuel cells, Chin. J. Chem. Eng. 26(10) (2018) 2130-2138. [20] J.Y. Cao, H.M. Zhang, W.X. Xu, X.F. Li, Poly(vinylidene fluoride) porous membranes precipitated in water/ethanol dual-coagulation bath:The relationship between morphology and performance in vanadium flow battery, J. Power Sources 249(2014) 84-91. [21] X.L. Xi, C. Ding, H.Z. Zhang, X.F. Li, Y.H. Cheng, H.M. Zhang, Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application, J. Power Sources 274(2015) 1126-1134. [22] H.Z. Zhang, C. Ding, J.Y. Cao, W.X. Xu, X.F. Li, H.M. Zhang, A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications, J. Mater. Chem. A 2(25) (2014) 9524-9531. [23] M. Jung, W. Lee, N.N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, D. Henkensmeier, Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries, Appl. Surf. Sci. 450(2018) 301-311. [24] Y. Ma, L. Li, L. Ma, N.A. Qaisrani, S. Gong, P. Li, F. Zhang, G. He, Cyclodextrin templated nanoporous anion exchange membrane for vanadium flow battery application, J. Membr. Sci. 586(2019) 98-105. [25] Y. Wang, S.H. Goh, T.S. Chung, Miscibility study of Torlon (R) polyamide-imide with Matrimid (R) 5218 polyimide and polybenzimidazole, Polymer 48(10) (2007) 2901-2909. [26] B.Z. Xing, O. Savadogo, The effect of acid doping on the conductivity of polybenzimidazole (PBI), J. New Mater. Electrochem. Syst. 2(2) (1999) 95-101. [27] J. Lobato, P. Canizares, M.A. Rodrigo, J.J. Linares, G. Manjavacas, Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs, J. Membr. Sci. 280(1-2) (2006) 351-362. [28] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systemsforproton exchangemembranes(PEMs), Chem. Rev.104(10)(2004)4587-4611. [29] J.B. Liao, M.Z. Lu, Y.Q. Chu, J.L. Wang, Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries, J. Power Sources 282(2015) 241-247. [30] X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance, Electrochim. Acta 153(2015) 492-498. [31] J.K. Jang, T.H. Kim, S.J. Yoon, J.Y. Lee, J.C. Lee, Y.T. Hong, Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries, J. Mater. Chem. A 4(37) (2016) 14342-14355. [32] S.S. Peng, X.M. Yan, D.S. Zhang, X.M. Wu, Y.L. Luo, G.H. He, A H3PO4 preswelling strategy to enhance the proton conductivity of a H2SO4-doped polybenzimidazole membrane for vanadium flow batteries, RSC Adv. 6(28) (2016) 23479-23488. [33] Z.J. Xia, L.B. Ying, J.H. Fang, Y.Y. Du, W.M. Zhang, X.X. Guo, J. Yin, Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications, J. Membr. Sci. 525(2017) 229-239. [34] M. Jung, W. Lee, C. Noh, A. Konovalova, G.S. Yi, S. Kim, Y. Kwon, D. Henkensmeier, Blending polybenzimidazole with an anion exchange polymer increases the efficiency of vanadium redox flow batteries, J. Membr. Sci. 580(2019) 110-116. [35] S. Maurya, S.H. Shin, J.Y. Lee, Y. Kim, S.H. Moon, Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery, RSC Adv. 6(7) (2016) 5198-5204. [36] Z.Z. Yuan, Y.Q. Duan, H.Z. Zhang, X.F. Li, H.M. Zhang, I. Vankelecom, Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries, Energy Environ. Sci. 9(2) (2016) 441-447. [37] T. Luo, O. David, Y. Gendel, M. Wessling, Porous poly(benzimidazole) membrane for all vanadium redox flow battery, J. Power Sources 312(2016) 45-54. [38] W.J. Lu, Z.Z. Yuan, Y.Y. Zhao, H.Z. Zhang, H.M. Zhang, X. F, Li Porous membranes in secondary battery technologies, Chem. Soc. Rev. 46(8) (2017) 2199-2236. [39] S.S. Peng, X.M. Yan, X.M. Wu, D.S. Zhang, Y.L. Luo, L. Su, G.H. He, Thin skinned asymmetric polybenzimidazole membranes with readily tunable morphologies for highperformance vanadium flow batteries, RSC Adv. 7(4) (2017) 1852-1862. [40] J.A. Mader, B.C. Benicewicz, Sulfonated polybenzimidazoles for high temperature PEM fuel cells, Macromolecules 43(16) (2010) 6706-6715. [41] P. Dlugolecki, K. Nymeijer, S. Metz, M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients, J. Membr. Sci. 319(1-2) (2008) 214-222. [42] P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries, Electrochim. Acta 105(2013) 584-592. [43] C.X. Sun, J. Chen, H.M. Zhang, X. Han, Q.T. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, J. Power Sources 195(3) (2010) 890-897. [44] H.Z. Zhang, H.M. Zhang, X.F. Li, Z.S. Mai, W.P. Wei, Y. Li, Crosslinkable sulfonated poly (diallyl-bisphenol ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources 217(2012) 309-315. [45] W.X. Xu, Y.Y. Zhao, Z.Z. Yuan, X.F. Li, H.M. Zhang, I.F.J. Vankelecom, Highly stable anion exchange membranes with internal cross-linking networks, Adv. Funct. Mater. 25(17) (2015) 2583-2589. [46] T.H. Kim, S.K. Kim, T.W. Lim, J.C. Lee, Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes, J. Membr. Sci. 323(2) (2008) 362-370. [47] S.K. Kim, T.H. Kim, J.W. Jung, J.C. Lee, Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications, Polymer 50(15) (2009) 3495-3502. [48] Z.S. Mai, H.M. Zhang, X.F. Li, C. Bi, H. Dai, Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources 196(1) (2011) 482-487. [49] R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics 118(3-4) (1999) 287-299. [50] X. Glipa, B. Bonnet, B. Mula, D.J. Jones, J. Roziere, Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole, J. Mater. Chem. 9(12) (1999) 3045-3049. [51] Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, J. Electrochem. Soc. 151(1) (2004) A8-A16. [52] J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid-doped polybenzimidazoles-A new polymer electrolyte, J. Electrochem. Soc. 142(7) (1995) L121-L123. |
[1] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 61-71. |
[2] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[3] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[4] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[5] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[6] | Zhiwei Du, Jinxue Cheng, Qinglin Huang, Mingxing Chen, Changfa Xiao. Electrospinning organic solvent resistant preoxidized poly(acrylonitrile) nanofiber membrane and its properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 289-299. |
[7] | Dengke Pang, Zhihong Zhang, Yongquan Zhou, Zhenhai Fu, Quan Li, Yongming Zhang, Guangguo Wang, Zhuanfang Jing. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 31-39. |
[8] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[9] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[10] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[11] | Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 474-484. |
[12] | Q. Yang, A. Wang, J. Luo, W. Tang. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 202-215. |
[13] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[14] | Qingjun Zhang, Youguang Ma, Xigang Yuan, Aiwu Zeng. Box-Behnken experimental design for optimizing process parameters in carbonate-promoted direct thiophene carboxylation reaction with carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 222-234. |
[15] | Qingjun Zhang, Pengyuan Shi, Xigang Yuan, Youguang Ma, Aiwu Zeng. Direct carboxylation of thiophene with CO2 in the solvent-free carboxylate-carbonate molten medium: Experimental and mechanistic insights [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 264-282. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||