[1] Manual on Code, International Codes, Volume I. 1, Regulations:Part A-Alphanumeric Codes, World Meteorological Organization (WMO), 1995. [2] S.S. Lim, A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010:A systematic analysis for the Global Burden of Disease Study 2010, Lancet 380(2012) 2224-2260. [3] I.C. Pope, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA 287(2002) 1132-1141. [4] J.A. Sarnat, J. Schwartz, H.H. Suh, Fine particulate air pollution and mortality in 20 U. S. cities, N. Engl. J. Med. 344(2001) 1253-1254. [5] B. Ostro, J.V. Spadaro, S. Gumy, P. Mudu, Y. Awe, F. Forastiere, A. Peters, Assessing the recent estimates of the global burden of disease for ambient air pollution:Methodological changes and implications for low-and middle-income countries, Environ. Res. 166(2018) 713-725. [6] U. Poschl, Atmospheric aerosols:composition, transformation, climate and health effects, Angew. Chem. Int. Ed. 44(2005) 7520-7540. [7] J. Xu, F. Zhu, S. Wang, X. Zhao, M. Zhang, X. Ge, J. Wang, W. Tian, L. Wang, L. Yang, L. Ding, X. Lu, X. Chen, Y. Zheng, Z. Guo, Impacts of relative humidity on fine aerosol properties via environmental wind tunnel experiments, Atmos. Environ. 206(2019) 21-29. [8] Y.C. Chen, C.C.K. Chou, Y.J. Tsai, S.Y. Chang, W.N. Chen, The hourly characteristics of aerosol chemical compositions under fog and high particle pollution events in Kinmen, Atmos. Res. 223(2019) 132-141. [9] B. Onat, Ü.A. Şahin, B. Uzun, Ö. Akın, F. Özkaya, C. Ayvaz, Determinants of exposure to ultrafine particulate matter, black carbon, and PM2.5 in common travel modes in Istanbul, Atmos. Environ 206(2019) 258-270. [10] Y. Cheng, K.B. He, Z.Y. Du, M. Zheng, F.K. Duan, Y.L. Ma, Humidity plays an important role in the PM2.5 pollution in Beijing, Environ. Pollut. 197(2015) 68-75. [11] Y. Zhang, W. Zhang, Z. Yang, J. Liu, F. Yang, N. Li, L. Du, Enhancement of fine particle filtration with efficient humidification, Chin. J. Chem. Eng. 24(2016) 453-459. [12] I. Nezis, G. Biskos, K. Eleftheriadis, O.-I. Kalantzi, Particulate matter and health effects in offices-A review, Build. Environ. 156(2019) 62-73. [13] J.F. Montgomery, S.I. Green, S.N. Rogak, Impact of relative humidity on HVAC filters loaded with hygroscopic and non-hygroscopic particles, Aerosol Sci. Technol. 49(2015) 322-331. [14] https://www.camfil.com/en/insights/case-studies/huadian-tianjin. [15] S. Kaur, S. Sundarrajan, D. Rana, T. Matsuura, S. Ramakrishna, Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane, J. Membr. Sci. 392-393(2012) 101-111. [16] J. Liu, F.O. Dunne, X. Fan, X. Fu, W.-H. Zhong, A protein-functionalized microfiber/protein nanofiber bi-layered air filter with synergistically enhanced filtration performance by a viable method, Sep. Purif. Technol. 229(2019) 115837. [17] V. Kadam, I.L. Kyratzis, Y.B. Truong, J. Schutz, L. Wang, R. Padhye, Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration, Sep. Purif. Technol. 224(2019) 247-254. [18] H.B. Kim, W.J. Lee, S.C. Choi, K.B. Lee, M.-H. Lee, Dependence of the fiber diameter on quality factor of filters fabricated with meta-aramid nanofibers, Sep. Purif. Technol. 222(2019) 332-341. [19] N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S.S. Al-Deyab, B. Ding, Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration, Sep. Purif. Technol. 126(2014) 44-51. [20] S. Lee, A.R. Cho, D. Park, J.K. Kim, K.S. Han, I.J. Yoon, M.H. Lee, J. Nah, Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2.5 dust proof mask, ACS Appl. Mater. Interfaces 11(2019) 2750-2757. [21] J. Li, D. Zhang, T. Yang, S. Yang, X. Yang, H. Zhu, Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM 2.5, J. Membr. Sci. 551(2018) 85-92. [22] T. Hua, Y. Li, X. Zhao, X. Yin, J. Yu, B. Ding, Stable low resistance air filter under high humidity endowed by self-emissionfar-infrared for effective PM 2.5 capture, Compos. Commun. 6(2017) 29-33. [23] X.H. Qin, S.Y. Wang, Filtration properties of electrospinning nanofibers, J. Appl. Polym. Sci. 102(2006) 1285-1290. [24] S.J. Poormohammadian, P. Darvishi, A.M.G. Dezfuli, Investigating the structural effect of electrospun nano-fibrous polymeric films on water vapor transmission, Chin. J. Chem. Eng. 27(2019) 100-109. [25] X. Zhao, Y. Li, T. Hua, P. Jiang, X. Yin, J. Yu, B. Ding, Cleanable air filter transferring moisture and effectively capturing PM2.5, Small 13(2017)1603306. [26] R.U. Rehman, Q. Song, L. Peng, Y. Chen, X. Gu, Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition, Chin. J. Chem. Eng. 27(2019) 2397-2406. [27] A. Bhran, A. Shoaib, D. Elsadeq, A. El-gendi, H. Abdallah, Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes, Chin. J. Chem. Eng. 26(2018) 715-722. [28] S. Chandra1, D. Singh, A. Sarkar, PVC membrane selective electrode for determination of cadmium(II) ion in chocolate samples, Chin. J. Chem. Eng. 22(2014) 480-488. [29] R.-R. Cai, L.-Z. Zhang, A.-B. Bao, PM collection performance of electret filters electrospun with different dielectric materials-A numerical modeling and experimental study, Build. Environ. 131(2018) 210-219. [30] L.Y. Wang, L.E. Yu, J.Y. Lai, T.S. Chung, Effects of pluronic F127 on phase inversion and membrane formation of PAN hollow fibers for air filtration, J. Membr. Sci. 584(2019) 137-147. [31] L.Y. Wang, W.F. Yong, L.E. Yu, T.S. Chung, Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles, J. Membr. Sci. 535(2017) 342-349. [32] Y. Yang, W. Xu, F. Zhang, Z.X. Low, Z. Zhong, W. Xing, Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue, J. Membr. Sci. 541(2017) 500-509. [33] Q. Zhu, X. Tang, S. Feng, Z. Zhong, J. Yao, Z. Yao, ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control, J. Membr. Sci. 581(2019) 252-261. [34] J. Li, D. Zhang, T. Yang, S. Yang, X. Yang, H. Zhu, Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM 2.5, J. Membr. Sci. 551(2018) 85-92. [35] X. Gao, Z.K. Li, J. Xue, Y. Qian, L.Z. Zhang, J. Caro, H. Wang, Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification, J. Membr. Sci. 586(2019) 162-169. [36] K.M. Yun, C.J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, K. Okuyama, Nanoparticle filtration by electrospun polymer fibers, Chem. Eng. Sci. 62(2007) 4751-4759. [37] C.Y. Chen, Filtration of aerosols by fibrous media, Chem. Rev. 55(1955) 595-623. [38] Y. Li, X. Yin, J. Yu, B. Ding, Electrospun nanofibers for high-performance air filtration, Compos. Commun. 15(2019) 6-19. [39] Y. Yang, S. Zhang, X. Zhao, J. Yu, B. Ding, Sandwich structured polyamide-6/polyacrylonitrilenanonets/bead-on-string composite membrane for effective air filtration, Sep. Purif. Technol. 152(2015) 14-22. [40] R. Zhang, C. Liu, P.C. Hsu, C. Zhang, N. Liu, J. Zhang, H.R. Lee, Y. Lu, Y. Qiu, S. Chu, Y. Cui, Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources, Nano Lett. 16(2016) 3642-3649. [41] Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, Preparation of nanofibrous metalorganic framework filters for efficient air pollution control, J. Am. Chem. Soc. 138(2016) 5785-5788. [42] Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen, S. Yuan, C. Xu, J. Zhou, X. Feng, X. Ma, B. Wang, Roll-to-roll production of metal-organic framework coatings for particulate matter removal, Adv. Mater. 29(2017) 1606221. [43] L. Zhong, T. Wang, L. Liu, W. Du, S. Wang, Ultra-fine SiO2nanofilament-based PMIA:A double network membrane for efficient filtration of PM particles, Sep. Purif. Technol. 202(2018) 357-364. [44] J. Wang, Y. Li, H. Tian, J. Sheng, J. Yu, B. Ding, Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers, RSC Adv. 4(2014) 61068-61076. |