[1] K. Stamatopoulos, H.K. Batchelor, F. Alberini, J. Ramsay, M.J.H. Simmonset, Understanding the impact of media viscosity on dissolution of a highly water soluble drug within a USP 2 mini vessel dissolution apparatus using an optical planar induced fluorescence (PLIF) method, Int. J. Pharm. 495(1) (2015) 362-373. [2] Z. Ulker, C. Erkey, An emerging platform for drug delivery:Aerogel based systems, J. Control. Release 177(2014) 51-63. [3] C. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Qiang, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica particles:A novel drug-delivery system, Adv. Mater. 16(21) (2004) 1959-1966. [4] H. Jonassen, Polysaccharide based nanoparticles for drug delivery applications, phD Thesi, University of Oslo, Norway, 2014. [5] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev. 60(15) (2008) 1650-1662. [6] Z. Ulker, C. Erkey, An advantageous technique to load drugs into aerogels:Gas antisolvent crystallization inside the pores, J. Supercrit. Fluids 120(2) (2017) 310-319. [7] M. Alnaief, I. Smirnova, Effect of surface functionalization of silica aerogel on their adsorptive and release properties, J. Non-Cryst. Solids 356(33-34) (2010) 1644-1649. [8] L. Amirkani, J. Moghaddas, H. Jafarizadeh-Malmiri, Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion, RSC Adv. 6(15) (2016) 12676-12687. [9] I. De Marco, E. Reverchon, Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption, Chem. Eng. Res. Des. 119(2017) 221-230. [10] C.A. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems, Carbohydr. Polym. 86(4) (2011) 1425-1438. [11] U. Guenther, I. Smirnova, R.H.H. Neubert, Hydrophilic silica aerogels as dermal drug delivery systems-Dithranol as a model drug, Eur. J. Pharm. Biopharm. 69(3) (2008) 935-942. [12] Z. Novak, M. Habulin, V. Krmelj, Z. Knez, Silica aerogels as supports for lipase catalyzed esterifications at sub-and supercritical conditions, J. Supercrit. Fluids 27(2) (2003) 169-178. [13] P. Veres, M. Keri, I. Bányai, I. Lázár, I. Fábián, C. Domingo, J. Kalmár, Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics, Colloids Surf. B:Biointerfaces 152(2017) 229-237. [14] T. Mehling, I. Smirnova, U. Guenther, R.H.H. Neubert, Polysaccharide-based aerogels as drug carriers, J. Non-Cryst. Solids 355(2009) 2472-2479. [15] C.A. García-González, I. Smirnova, Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems, J. Supercrit. Fluids 79(2013) 152-158. [16] C.A. García-González, M. Jin, J. Gerth, C. Alvarez-Lorenzo, I. Smirnova, Polysaccharide-based aerogel microspheres for oral drug delivery, Carbohydr. Polym. 117(2015) 797-806. [17] M. Alnaief, I. Smirnova, In situ production of spherical aerogel microparticles, J. Supercrit. Fluids 55(3) (2011) 1118-1123. [18] S.S. Kistler, Coherent expanded aerogels and jellies, Nature (1931) 127-741. [19] A. Ubeyitogullari, O.N. Ciftci, Formation of nanoporous aerogels from wheat starch, Carbohydr. Polym. 147(2016) 125-132. [20] X. Chang, D. Chen, X. Jiao, Starch-derived carbon aerogels with high-performance for sorption of cationic dyes, Polym. 51(2010) 3801-3807. [21] I.D. Marco, L. Baldino, S. Cardea, E. Reverchon, Supercritical gel drying for the production of starch aerogels for delivery systems, Chemical Engineering Transactions 43(2015) 307-312. [22] A. Demilecamps, Synthesis and characterization of polysaccharide-silica composite aerogels for thermal superinsulation, Ph. D. Thesis, Mines Paris Tech., France, 2016. [23] A. Veronovski, G. Tkalec, Z. Knez, Z. Novak, Characterisation of biodegradable pectin aerogels and their potential use as drug carriers, Carbohydr. Polym. 113(2014) 272-278. [24] L. Wang, M. Sánchez-Soto, T. Abt, Properties of bio-based gum Arabic/clay aerogels, Industrial Crops and Products 91(2016) 15-21. [25] G.M. Glenn, D.J. Stern, Starch-based microcellular foam, U.S. Pat, 5958889A, 1999. [26] N.L. Vanier, S.L.M. Halal, A.R.G. Dias, E.R. Zavareze, Molecular structure, functionality and applications of oxidized starches:A review, Food Chem. 221(2017) 1546-1559. [27] D. Vashisht, A. Pandey, A. Hermenean, M.J. Yánez-Gascón, H. Pérez-Sánchez, K.J. Kumar, Effect of dry heating and ionic gum on the physicochemical and release properties of starch from Dioscorea, Int. J. Biol. Macromol. 95(2017) 557-563. [28] G. Chawla, P. Gupta, R. Thilagavathi, A.K. Chakraborti, A.K. Bansal, Characterization of solid-state forms of celecoxib, Eur. J. Pharm. Sci. 20(3) (2003) 305-317. [29] G.V.M.M. Babu, V.G. Shankar, K.H. Sankar, A. Seshasayana, N.K. Kumar, K.V.R. Murthy, Development of dissolution medium for a poorly water soluble drug, celecoxib, Indian J. Pharm. Sci. 64(2002) 588-591. [30] B. Vijayakumar, V. Kannappan, V. Sathyanarayanamoorthi, DFT analysis and spectral characteristics of celecoxib a potent COX-2 inhibitor, J. Mol. Struct. 1121(2016) 16-25. [31] J.M. Bock, S.G. Menon, L.L. Sinclair, N.S. Bedford, P.C. Goswami, F.E. Domann, D.K. Trask, Celecoxib toxicity is cell cycle phase specific, Cancer Res. 67(8) (2007) 3801-3808. [32] M. Kern, D. Schubert, D. Sahi, M.M. Schoneweiß, I. Moll, A.M. Haugg, H.P. Dienes, K. Breuhahn, P. Schirmacher, Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells, Hepatology 36(4) (2002) 885-894. [33] G. Tkalec, Ž. Knez, Z. Novak, Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs, J. Supercrit. Fluids 106(2015) 16-22. [34] D.D. Lovskaya, A.E. Lebedev, N.V. Menshutina, Aerogels as drug delivery systems:In vitro and in vivo evaluations, J. Supercrit. Fluids 106(2015) 115-121. [35] A. Khazraei, A. Tarlani, N. Naderi, J. Muzart, Z. Abdulhameed, M. Slami-Moghadam, Enhanced release and drug delivery of celecoxib into physiological environment by the different types of nanoscale vehicles, Applied Surface Science 422(2017) 873-882. [36] P. Veres, A.M. López-Periago, I. Lázár, J. Saurina, C. Domingo, Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs, Int. J. Pharm. 496(2015) 360-370. [37] V.S.S. Gonçalves, P. Gurikov, J. Poejo, A.A. Matias, S. Heinrich, C.M.M. Duarte, I. Smirnova, Alginate-based hybrid aerogel microparticles for mucosal drug delivery, Eur. J. Pharm. Biopharm. 107(2016) 160-170. [38] C. Maderuelo, A. Zarzuelo, J.M. Lanao, Critical factors in the release of drugs from sustained release hydrophilic matrices, J. Control. Release 154(2011) 2-19. |