[1] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. 79(2001) 2252-2254. [2] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nano-liquids containing copper nano-particles, Appl. Phys. 78(2001) 718-720. [3] M.A. Sheremet, I. Pop, Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanoliquid:Buongiorno's mathematical model, J. Heat Transf. 137(2015), 072601. [4] M. Ghalambaz, M.A. Sheremet, I. Pop, Free Con. vection in a Parallelogrammic Porous Cavity Filled with a Nanoliquid Using Tiwari and Das Nanoliquid Model, Plos one 2015. https://doi.org/10.1371/journal.pone.0126486. [5] P. Sudarsana Reddy, Ali J. Chamkha, heat and mass transfer characteristics of Al2o3-water and Ag-water nanoliquid through porous media over a vertical cone with heat generation/absorption, Journal of Porous Media 20(2017) 1-17. [6] M.A. Sheremet, C. Revnic, I. Pop, Free convection in a porous wavy cavity filled with a nanoliquid using Buongiorno's mathematical model with thermal dispersion effect, Appl. Math. Comput. 299(2017) 1-15. [7] Z. Hussain, T. Hayat, A. Ahmed, B. Ahmed, Darcy Forhheimer aspects for CNTs nanoliquid past a elongating cylinder using Keller box method, Results in Physics 11(2018) 801-816. [8] L. Zhixiong, I. Khan, A. Shafee, I. Tlili, T. Asifa, Energy transfer of Jeffery-Hamel nanoliquid flow between non-parallel walls using Maxwell-Garnetts (MG) and brinkman models, Energy Rep. 4(2018) 393-399. [9] P. Sreedevi, P. Sudarsana Reddy, A.J. Chamkha, Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition, Int. J. Mech. Sci. 135(2018) 646-655. [10] P. Sudarsana Reddy, K. Jyothi, M. Suryanarayana Reddy, Flow and heat transfer analysis of carbon nanotubes based Maxwell nanoliquid flo. w driven by rotating stretchable disks with thermal radiation, J. Braz. Soc. Mech. Sci. Eng. 40(2018) 576. https://doi.org/10.1007/s40430-018-1494-9. [11] A. Zaib, M.M. Rashidi, A.J. Chamkha, N.F. Mohammad, Impact of nonlinear thermal radiation on stagnation-point flow of a carreau nanoliquid past a nonlinear elongating sheet with binary chemical reaction and activation energy, J. Mech. Eng. Sci. 23(2018) 962-972. [12] D.S. Bondarenko, M.A. Sheremet, H.F. Oztop, M.E. Ali, Natural convection of Al2O3/H2O nanoliquid in a cavity with a heat-generating element, Heat Line Visualization, International Journal of Heat and Mass Transfer 130(2019) 564-574. [13] M.M. Bhatti, M.M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanoliquid over a porous shrinking/elongating sheet, J. Mol. Liq. 221(2016) 567-573. [14] C. Srinivas Reddy, N. Kishan, M.R. Mohammad, MHD flow and heat transfer characteristics of Williamson nanoliquid over a elongating sheet with variable thickness and variable thermal conductivity, Transactions of A. Razmadze Mathematical Institute 171(2017) 195-211. [15] M. Khan, M.Y. Malik, T. Salahuddin, K.U. Rehman, M. Naseer, I. Khan, MHD flow of Williamson nanoliquid over a cone and plate with chemically reactive species, J. Mol. Liq. 231(2017) 580-588. [16] T. Hayat, M.Z. Kiyani, A. Alsaedi, M. Ijaz Khan, I. Ahmad, Mixed convective three-dimensional flow of Williamson nanoliquid subject to chemical reaction, Int. J. Heat Mass Transf. 127(2018) 422-429. [17] M. Khan, A. Hamid, Influence of non-linear thermal radiation on 2D unsteady flow of a Williamson liquid with heat source/sink, Results in Physics 7(2017) 3968-3975. [18] A. Hamid, M. Hashim, Khan, impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanoliquid, J. Mol. Liq. 262(2018) 435-442. [19] A. Hamid, M. Hashim, A. Khan, Hafeez, unsteady stagnation-point flow of Williamson liquid generated by elongating/shrinking sheet with Ohmic heating, Int. J. Heat Mass Transf. 126(2018) 933-940. [20] H. Aamir, H.M. Khan, Unsteady mixed convective flow of Williamson nanoliquid with heat transfer in the presence of variable thermal conductivity and magnetic field, J. Mol. Liq. 260(2018) 436-446. [21] M. Hamid, M. Usman, Z.H. Khan, R.U. Haq, W. Wang, Numerical study of unsteady MHD flow of Williamson nanoliquid in a permeable channel with heat source/sink and thermal radiation, Eur. Phys. J. Plus 133(2018) 527. [22] R. Kandasamy, I. Muhaimin, R. Mohammad, Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions, Alexandria Engineering Journal 55(2016) 275-285. [23] U. Imran, S. Shafie, I. Khan, MHD mixed convection flow of Casson liquid over a moving wedge saturated in a porous medium in the presence of chemical reaction and convective boundary conditions, J. Sci. Technol. 9(2017) 131-139. [24] M. Khan, M. Azam, A.S. Alshomrani, Unsteady slip flow of Carreau nanoliquid over a wedge with nonlinear radiation and new mass flux condition, Results in Physics 7(2017) 2261-2270. [25] M. Khan, M. Azam, A.S. Alshomrani, Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanoliquid over a wedge, Int. J. Heat Mass Transf. 110(2017) 437-446. [26] N. Sandeep, M. Gnaneswara Reddy, Heat transfer of nonlinear radiative magneto hydrodynamic cu-water nanoliquid flow over two different geometries, J. Mol. Liq. 225(2017) 87-94. [27] H. A. El-Dawy, G. Rama Subba Reddy, Unsteady Flow of a Nanoliquid Over a Shrinking/Elongating Porous Wedge Sheet in the Presence of Solar Radiation, Journal of Nanoliquids 7(2018) 1208-1216. [28] A. Mahdy, A.J. Chamkha, Unsteady MHD boundary layer flow of tangent hyperbolic two-phase nanoliquid of moving stretched porous wedge, International Journal of Numerical Methods for Heat & Liquid Flow Int. J. Heat Mass Transf. Liq. Flow 28(11) (2018) 2567-2580, https://doi.org/10.1108/HFF-12-2017-0499. [29] L. Zhixiong, M. Sheikholeslami, M. Samandari, A. Shafee, Nanoliquid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces, Int. J. Heat Mass Transf. 127(2018) 914-926. [30] W.A. Khan, I. Haq, M. Ali, M. Shahzad, M. Khan, M. Irfan, Significance of static-moving wedge for unsteady Falkner-Skan forced convective flow of MHD cross liquid, J. Braz. Soc. Mech. Sci. Eng. 40(2018) 470-482. [31] M. Azam, A. Shakoor, H.F. Rasool, M. Khan, Numerical simulation for solar energy aspects on unsteady convective flow of MHD cross nanoliquid:A revised approach, Int. J. Heat Mass Transf. 131(2019) 495-505. [32] I.S. Awaludi, A. Ishak, I. Pop, On the stability of MHD boundary layer flow over a elongating/shrinking wedge, Sci. Rep. 8(2018) 13622-13629. [33] W. Ibrahim, T. Ayele, Magnetohydrodynamic (MHD) boundary layer flow past a wedge with heat transfer and viscous effects of nanoliquid embedded in porous media, Math. Probl. Eng. 25(2019) 1-12. [34] A. Hamid, M. Hashim, Khan, numerical simulation for heat transfer performance in unsteady flow of Williamson liquid driven by a wedge-geometry, Results in Physics 9(2018) 479-485. [35] M. Hashim, A. Khan, Hamid, numerical investigation on time-dependent flow of Williamson nanoliquid along with heat and mass transfer characteristics past a wedge geometry, Int. J. Heat Mass Transf. 118(2018) 480-491. [36] T. Hayat, S. Ayub, A. Tanveer, A. Alsaedi, Numerical simulation for MHD Williamson fluid utilizing modified Darcy's law, Results in Physics 10(2018) 751-759. [37] T. Hayat, A. Saleem, A. Tanveer, F. Alsaadi, Numerical analysis for peristalsis of Williamson nanofluid in presence of an endoscope, Int. J. Heat Mass Transf. 114(2017) 395-401. [38] M. Khan, M.Y. Malik, T. Salahuddin, A. Hussian, Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet, Results in Physics 8(2018) 862-868. [39] T. Salahuddin, M.Y. Malik, A. Hussain, M. Awais, S. Bilal, Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller box method, IJNSNS 18(2017) 9-17. [40] M. Khan, T. Salahuddin, M. Yousaf, F. Khan, A. Hussain, Variable diffusion and conductivity change in 3D rotating Williamson fluid flow along with magnetic field and activation energy, International Journal of Numerical Methods for Heat & Fluid Flow 30(5) (2019) 2467-2484. [41] P. Sudarsan Reddy, D.R.V. Prasada Rao, Thermo-diffusion and diffusion -thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density temperature variation-Finite element study, Journal of Applied Liquid Mechanics 5(2012) 139-144. [42] P. Sreedevi, P. Sudarsana Reddy, Ali J. Chamkha, Heat and mass transfer analysis of nanoliquid over linear and non-linear elongating surface with thermal radiation and chemical reaction, Powder Technol. 315(2017) 194-204. [43] K. Jyothi, P. Sudarsana Reddy, M. Suryanarayana Reddy, Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanoliquid between rotating stretchable disks with convective boundary conditions, Powder Technol. 331(2018) 326-337. [44] P. Sudarsana Reddy, A.J. Chamkha, Heat and mass transfer characteristics of MHD three-dimensional flow over a elongating sheet filled with water-based alumina nanoliquid, International Journal of Numerical Methods for Heat and Liquid Flow 28(2018) 532-546. |