[1] J.C. Cheng, X. Feng, D. Cheng, C. Yang, Retrospect and perspective of micro-mixing studies in stirred tanks, Chin. J. Chem. Eng. 20(1) (2012) 178-190. [2] L. Vicum, S. Ottiger, M. Mazzotti, L. Makowski, J. Baldyga, Multi-scale modeling of a reactive mixing process in a semibatch stirred tank, Chem. Eng. Sci. 59(8-9) (2004) 1767-1781. [3] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Study of micromixing in a stirred tank using a Rushton turbine-comparison of feed positions and other mixing devices, Chem. Eng. Res. Des. 80(A8) (2002) 855-863. [4] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Intensifying micromixing in a semi-batch reactor using a Rushton turbine, Chem. Eng. Sci. 60(8-9) (2005) 2333-2339. [5] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Macro- and micromixing studies in an unbaffled vessel agitated by a Rushton turbine, Chem. Eng. Sci. 63(1) (2008) 35-46. [6] J. Yang, Q.H. Zhang, Z.-S. Mao, C. Yang, Enhanced micromixing of non-Newtonian fluids by a novel zigzag punched impeller, Ind. Eng. Chem. Res. 58(16) (2019) 6822-6829. [7] W.W. Lin, D.J. Lee, Micromixing effects in aerated stirred tank, Chem. Eng. Sci. 52(21-22) (1997) 3837-3842. [8] D.W.F. Brilman, R. Antink, W.P.M. van Swaaij, G.F. Versteeg, Experimental study of the effect of bubbles, drops and particles on the product distribution for a mixing sensitive, parallel-consecutive reaction system, Chem. Eng. Sci. 54(13-14) (1999) 2325-2337. [9] W.B. Li, X.Y. Geng, Y.Y. Bao, Z.M. Gao, Micromixing characteristics in an aerated stirred tank with half elliptical blade disk turbine, Int. J. Chem. React. Eng. 12(1) (2014) 2194-5748. [10] J. Hofinger, R.W. Sharpe, W. Bujalski, S. Bakalis, M. Assirelli, A. Eaglesham, A.W. Nienow, Micromixing in two-phase (G-L and S-L) systems in a stirred vessel, Can. J. Chem. Eng. 89(5) (2011) 1029-1039. [11] H. Unadkat, C.D. Rielly, G.K. Hargrave, Z.K. Nagy, Application of fluorescent PIV and digital image analysis to measure turbulence properties of solid-liquid stirred suspensions, Chem. Eng. Res. Des. 87(4A) (2009) 573-586. [12] L. Yang, J.C. Cheng, P. Fan, C. Yang, Z.S. Mao, Micromixing of solid-liquid systems in a stirred tank with double impellers, Chem. Eng. Technol. 36(3) (2013) 443-449. [13] D. Cheng, X. Feng, C. Yang, Z.S. Mao, Modelling and experimental investigation of micromixing of single-feed semi-batch precipitation in a liquid-liquid stirred reactor, Chem. Eng. J. 293(2016) 291-301. [14] W.B. Li, X.Y. Geng, Y.Y. Bao, Z.M. Gao, Micromixing characteristics in a gas-liquidsolid stirred tank with settling particles, Chin. J. Chem. Eng. 23(3) (2015) 461-470. [15] M. Jasińska, J. Bałdyga, M. Cooke, A. Kowalski, Investigations of mass transfer with chemical reactions in two-phase liquid-liquid systems, Chem. Eng. Res. Des. 91(11) (2013) 2169-2178. [16] R.O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 2003. [17] D.L. Marchisio, A.A. Barresi, CFD simulation of mixing and reaction:The relevance of the micro-mixing model, Chem. Eng. Sci. 58(16) (2003) 3579-3587. [18] Z. Wang, Q.H. Zhang, C. Yang, Z.S. Mao, X.Q. Shen, Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank, Chem. Eng. Technol. 30(12) (2007) 1642-1649. [19] J. Baldyga, M. Henczka, L. Makowski, Effect of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor, Chem. Eng. Res. Des. 79(8) (2001) 895-900. [20] J. Baldyga, L. Makowski, CFD modeling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank, Chem. Eng. Technol. 27(3) (2004) 225-231. [21] L. Wang, R.O. Fox, Comparison of micromixing models for CFD simulation of nanoparticle formation, AIChE J. 50(9) (2004) 2217-2232. [22] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52(2) (2006) 731-744. [23] D.L. Marchisio, Large eddy simulation of mixing and reaction in a confined impinging jets reactor, Comput. Chem. Eng. 33(2) (2009) 408-420. [24] X.X. Duan, X. Feng, Z.-S. Mao, C. Yang, Numerical simulation of reactive mixing process in a stirred reactor with the DQMOM-IEM model, Chem. Eng. J. 360(2019) 1177-1187. [25] X.X. Duan, X. Feng, C. Yang, Z.-S. Mao, CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor, Chin. J. Chem. Eng. 26(4) (2018) 675-683. [26] O. Akiti, P.M. Armenante, Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors, AIChE J. 50(3) (2004) 566-577. [27] Y. Han, J.J. Wang, X.P. Gu, L.F. Feng, Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor, Chem. Eng. Sci. 74(2012) 9-17. [28] X.X. Duan, X. Feng, C. Yang, Z.-S. Mao, Numerical simulation of micro-mixing in stirred reactors using the engulfment model coupled with CFD, Chem. Eng. Sci. 140(2) (2016) 179-188. [29] T.Y. Guo, X. Shi, G.W. Chu, Y. Xiang, L.X. Wen, J.F. Chen, Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor, Ind. Eng. Chem. Res. 55(17) (2016) 4856-4866. [30] Z.-S. Mao, C. Yang, Micro-mixing in chemical reactors:A perspective, Chin. J. Chem. Eng. 25(4) (2017) 381-390. [31] J. Baldyga, J.R. Bourne, Simplification of micromixing calculations. 1. Derivation and application of new model, Chem. Eng. J. 42(2) (1989) 83-92. [32] K. Malik, J. Baldyga, Influence of micromixing on the course of homogenous chemical reactions in suspensions, 14th European Conference on Mixing, Warszawa. (2012) 281-286. [33] V.V. Ranade, Numerical simulation of dispersed gas-liquid flows, Sadhana Acad. Proc. Eng. Sci. 17(1992) 237-273. [34] M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(A5) (2001) 533-546. [35] F. Kerdouss, A. Bannari, P. Proulx, R. Bannari, M. Skrga, Y. Labrecque, Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng. 32(8) (2008) 1943-1955. [36] H.N. Wang, X.Q. Jia, X. Wang, Z.X. Zhou, J.P. Wen, J.L. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38(1) (2014) 63-92. [37] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res. 45(12) (2006) 4416-4428. [38] G.R. Kasat, A.R. Khopkar, V.V. Ranade, A.B. Pandita, CFD simulation of liquid-phase mixing in solid-liquid stirred reactor, Chem. Eng. Sci. 63(15) (2008) 3877-3885. [39] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of suspension curves, Chem. Eng. J. 178(2011) 324-341. [40] A.R. Khopkar, J. Aubin, C. Xuereb, N. Le Sauze, J. Bertrand, V.V. Ranade, Gas-liquid flow generated by a pitched-blade turbine:Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. [41] R. Gelves, A. Dietrich, R. Takors, Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller, Bioprocess Biosyst. Eng. 37(3) (2014) 365-375. [42] A. Ochieng, M.S. Onyango, Drag models, solids concentration and velocity distribution in a stirred tank, Powder Technol. 181(1) (2008) 1-8. [43] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of solid particle distribution, Chem. Eng. J. 223(2013) 875-890. [44] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. [45] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(9) (2006) 2921-2929. [46] A.R. Khopkar, V.V. Ranade, CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes, AIChE J. 52(5) (2006) 1654-1672. [47] A.R. Sarhan, J. Naser, G. Brooks, CFD modeling of bubble column:Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation, Sep. Purif. Technol. 201(2018) 130-138. [48] Q. Li, J.C. Cheng, C. Yang, Z.-S. Mao, Simulation of a bubble column by computational fluid dynamics and population balance equation using the cell average method, Chem. Eng. Technol. 40(10) (2017) 1792-1801. [49] Y.H. Zhang, Y.L. Bai, H.L. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. [50] S.F. Yang, X.Y. Li, C. Yang, B. Ma, Z.-S. Mao, Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor, Ind. Eng. Chem. Res. 55(12) (2016) 3276-3286. [51] R.O. Fox, CFD models for analysis and Design of Chemical Reactors, Adv. Chem. Eng. 31(2006) 231-305. [52] J. Baldyga, J.R. Bourne, S.J. Hearn, Interaction between chemical reactions and mixing on various scales, Chem. Eng. Sci. 52(4) (1997) 457-466. [53] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I:Experimental procedure, Chem. Eng. Sci. 55(19) (2000) 4233-4243. [54] B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension, Chem. Eng. Sci. 62(24) (2007) 7184-7195. [55] J. Baldyga, J.R. Bourne, The effect of micromixing on parallel reactions, Chem. Eng. Sci. 45(4) (1990) 907-916. [56] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller:Two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80(4) (2002) 638-652. [57] M. Barigou, M. Greaves, Bubble-size distributions in a mechanically agitated gas-liquid contactor, Chem. Eng. Sci. 47(8) (1992) 2009-2025. [58] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89(1-3) (2002) 109-117. [59] G. Montante, M.H. Occulti, F. Magelli, A. Paglianti, PIV measurements of mean flow and turbulence modulation in dilute solid-liquid stirred tanks, 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2010, Lisbon, Portugal. [60] M. Micheletti, L. Nikiforaki, K.C. Lee, M. Yianneskis, Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions, Ind. Eng. Chem. Res. 42(24) (2003) 6236-6249. [61] P. Ranganathan, S. Sivaraman, Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics, Chem. Eng. Sci. 66(14) (2011) 3108-3124. [62] K. Ng, M. Yianneskis, Observations on the distribution of energy dissipation in stirred vessels, Chem. Eng. Res. Des. 78(A3) (2000) 334-341. [63] M. Soos, R. Kaufmann, R. Winteler, M. Kroupa, B. Luthi, Determination of maximum turbulent energy dissipation rate generated by a Rushton impeller through large Eddy simulation, AIChE J. 59(10) (2013) 3642-3658. [64] V.B. Rewatkar, K. Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated 3-phase reactors. 1. Experimental part, Ind. Eng. Chem. Res. 30(8) (1991) 1770-1784. [65] X. Feng, J.C. Cheng, X.Y. Li, C. Yang, Z.-S. Mao, Numerical simulation of turbulent flow in a baffled stirred tank with an explicit algebraic stress model, Chem. Eng. Sci. 69(1) (2012) 30-44. [66] X. Feng, X.Y. Li, J.C. Cheng, C. Yang, Z.-S. Mao, Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model, Chem. Eng. Sci. 82(2012) 272-284. [67] A. Ochieng, A.E. Lewis, CFD simulation of solids off-bottom suspension and cloud height, Hydrometallurgy. 82(1-2) (2006) 1-12. |