[1] Y. Su, V. Hessel, T. Noel, A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations, AIChE J. 61(2015) 2215-2227. [2] X.M. Gao, J. Fei, Y.Y. Shang, F. Fu, Desulfurization of liquid hydrocarbon fuels via Cu2O catalyzed photo-oxidation coupled with liquid-liquid extraction, Chin. J. Chem. Eng. 26(2018) 1508-1512. [3] W.H. Lei, Q.X. Zhou, G.Y. Jiang, B.W. Zhang, X.S. Wang, Photodynamic inactivation of Escherichia coli by Ru(Ⅱ) complexes, Photochem. Photobiol. Sci. 10(2011) 887-890. [4] D. Ziegenbalg, B. Wriedt, G. Kreisel, D. Kralisch, Investigation of photon fluxes within microstructured photoreactors revealing great optimization potentials, Chem. Eng. Technol. 39(2016) 123-134. [5] D. Heggo, S. Ookawara, Multiphase photocatalytic microreactors, Chem. Eng. Sci. 169(2017) 67-77. [6] J.P. Knowles, L.D. Elliott, K.I. Booker-Milburn, Flow photochemistry:old light through new windows, Beilstein J. Org. Chem. 8(2012) 2025-2052. [7] W.H. Xu, Y.H. Su, Y. Song, M.J. Shang, L. Zha, Q.H. Lu, Process analysis on preparation of cyclobutanetetracarboxylic dianhydride in a photomicroreactor within gas-liquid Taylor flow, Ind. Eng. Chem. Res. 57(2018) 2476-2485. [8] A.A. Donaldson, Z. Zisheng, Coupled transport phenomena in corrugated photocatalytic reactors, Chin. J. Chem. Eng. 19(2011) 763-772. [9] L. Rogers, K.F. Jensen, Continuous manufacturing-the green chemistry promise? Green Chem. 21(2019) 3481-3498. [10] W. Wang, R. Xie, X.J. Ju, Z. Liu, L.Y. Chu, Progress on control of meso-scale structures for droplet-template syntheses of particle materials, Prog. Chem. 30(2018) 44-50. [11] Y.C. Lu, S. Zhu, K. Wang, G.S. Luo, Simulation of the mixing process in a straight tube with sudden changed cross-section, Chin. J. Chem. Eng. 24(2016) 711-718. [12] X. Mao, G.C. Rutledge, T.A. Hatton, Polyvinylferrocene for noncovalent dispersion and redox-controlled precipitation of carbon nanotubes in nonaqueous media, Langmuir 29(2013) 9626-9634. [13] C.B. Ye, G.W. Chen, Y. Quan, Process characteristics of CO2 absorption by aqueous monoethanola mine in a microchannel reactor, Chin. J. Chem. Eng. 20(2012) 111-119. [14] F.J. Wang, J.P. Huang, J.H. Xu, Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process, Org. Process. Res. Dev. 23(2019) 2637-2646. [15] J.W. Kim, A. Fernandez-Nieves, N. Dan, A.S. Utada, M. Marquez, D.A. Weitz, Colloidal assembly route for responsive colloidosomes with tunable permeability, Nano Lett. 7(2007) 2876-2880. [16] J.S. Sui, J.Y. Yan, D. Liu, K. Wang, G.S. Luo, Continuous synthesis of nanocrystals via flow chemistry technology, Small 16(15) (2019) 1902828. [17] F. Politano, G. Oksdath-Mansilla, Light on the horizon:current research and future perspectives in flow photochemistry, Org. Process. Res. Dev. 22(2018) 1045-1062. [18] B. Wang, T. Qiu, B.Z. Chen, Photochemical process modeling and analysis of ozone generation, Chin. J. Chem. Eng. 22(2014) 721-729. [19] D. Cambie, C. Bottecchia, N.J.W. Straathof, V. Hessel, T. Noel, Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment, Chem. Rev. 116(2016) 10276-10341. [20] M. Sender, D. Ziegenbalg, Light sources for photochemical processes-estimation of technological potentials, Chem. Ing. Tech. 89(2017) 1159-1173. [21] O. Shvydkiv, A. Yavorskyy, K. Nolan, A. Youssef, E. Riguet, N. Hoffmann, M. Oelgemoeller, Photosensitized addition of isopropanol to furanones in a 365 nm UV-LED microchip, Photochem. Photobiol. Sci. 9(2010) 1601-1603. [22] J.S. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G.S. Luo, Design and scaling up of microchemical systems:a review, Annu. Rev. Chem. Biomol. 8(2017) 285-305. [23] H.S. Santana, J.L. Silva, D.S. Tortola, O.P. Taranto, Transesterification of sunflower oil in microchannels with circular obstructions, Chin. J. Chem. Eng. 26(2018) 852-863. [24] L.D. Elliott, M. Berry, B. Harji, D. Klauber, J. Leonard, K.I. Booker-Milburn, A smallfootprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale, Org. Process. Res. Dev. 20(2016) 1806-1811. [25] K. Poscharny, D.C. Fabry, S. Heddrich, E. Sugiono, M.A. Liauw, M. Rueping, Machine assisted reaction optimization:a self-optimizing reactor system for continuousflow photochemical reactions, Tetrahedron 74(2018) 3171-3175. [26] M.P. Ghosh, S. Mandal, S. Mukherjee, Correlations between microstructural and magnetic properties of Gd3+-doped spinel ferrite nanoparticles, Eur. Phys. J. Plus. 135(2020) 41. [27] M. Laube, D. den Engelsen, T. Jansen, G. Fern, P. Harris, T. Ireland, J. Silver, T. Juestel, On the photo-and cathodoluminescence of LaB3O6:Gd, Bi, Y3Al5O12:Pr, Y3Al5O12:Gd, Lu3Al5O12:Pr, and Lu3Al5O12:Gd, ECS J. Solid State SC. 7(2018) R206-R214. [28] L. Du, Y.J. Wang, Z.Q. Ren, C. Shen, G.S. Luo, Preparation of Au nanocolloids by in situ dispersion and their applications in surface-enhanced Raman scattering (SERS) films, Ind. Eng. Chem. Res. 55(2016) 6783-6791. [29] L. Du, Y.J. Wang, J.H. Xu, C. Shen, G.S. Luo, In situ dispersion of non-aqueous Fe3O4 nanocolloids by microdroplet coalescence and their use in the preparation of magnetic composite particles, Soft Matter 12(2016) 5180-5187. [30] M. Escriba-Gelonch, T. Noel, V. Hessel, Microflow high-p,T intensification of vitamin D3 synthesis using an ultraviolet lamp, Org. Process. Res. Dev. 22(2018) 147-155. [31] Z.F. Mu, Y.H. Hu, L. Chen, X.J. Wang, R. Chen, T. Wang, Y.R. Fu, J.X. Xu, Synthesis of Bi3+ and Gd3+ doped ZnB2O4 for evaluation as potential materials in luminescent display applications, Displays 35(2014) 147-151. |