Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 185-193.DOI: 10.1016/j.cjche.2020.11.004
Previous Articles Next Articles
Jianying Dai, Yaqin Sun, Zhilong Xiu
Received:
2020-08-31
Revised:
2020-11-09
Online:
2021-05-15
Published:
2021-02-28
Contact:
Zhilong Xiu
Supported by:
Jianying Dai, Yaqin Sun, Zhilong Xiu
通讯作者:
Zhilong Xiu
基金资助:
Jianying Dai, Yaqin Sun, Zhilong Xiu. Ionic liquid-based salting-out extraction of bio-chemicals[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 185-193.
Jianying Dai, Yaqin Sun, Zhilong Xiu. Ionic liquid-based salting-out extraction of bio-chemicals[J]. 中国化学工程学报, 2021, 29(2): 185-193.
[1] S.H. Hazeena, R. Sindhu, A. Pandey, P. Binod, Lignocellulosic bio-refinery approach for microbial 2,3-butanediol production, Bioresour. Technol. 302 (2020) 122873. [2] S.B. Li, L. Huang, C.Z. Ke, Z.W. Pang, L.M. Liu, Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia, Biotechnol. Biofuels 13 (1) (2020) 39. [3] Y.Q. Sun, J.T. Shen, L. Yan, J.J. Zhou, L.L. Jiang, Y. Chen, J.L. Yuan, E.M. Feng, Z.L. Xiu, Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges, Process Biochem. 71 (2018) 134–146. [4] Z.X. Dai, F. Guo, S.J. Zhang, W.M. Zhang, Q. Yang, W.L. Dong, M. Jiang, J.F. Ma, F. X. Xin, Bio-based succinic acid: an overview of strain development, substrate utilization, and downstream purification, Biofuel. Bioprod. Bioref. 14 (5) (2020) 965–985. [5] T.W. Yang, Z.M. Rao, X. Zhang, M.J. Xu, Z.H. Xu, S.T. Yang, Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects, Crit. Rev. Biotechnol. 37 (8) (2017) 990–1005. [6] H. Kawaguchi, T. Hasunuma, C. Ogino, A. Kondo, Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks, Curr. Opin. Biotech. 42 (2016) 30–39. [7] H.Z. Luo, R.L. Yang, Y.P. Zhao, Z.Y. Wang, Z. Liu, M.Y. Huang, Q.W. Zeng, Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation, Bioresour. Technol. 253 (2018) 343–354. [8] Y.Z. Wang, Q. Liao, F.L. Lv, X. Zhu, Y. Ran, C.J. Hou, Solid simultaneous saccharification and fermentation of rice straw for bioethanol production using nitrogen gas stripping, Rsc Adv. 5 (68) (2015) 55328–55335. [9] D. Cai, Z. Chang, L.L. Gao, C.J. Chen, Y.P. Niu, P.Y. Qin, Z. Wang, T.W. Tan, Acetone-butanol-ethanol (ABE) fermentation integrated with simplified gas stripping using sweet sorghum bagasse as immobilized carrier, Chem. Eng. J. 277 (2015) 176–185. [10] J. Sun, N.V.S.N.M. Konda, R. Parthasarathi, T. Dutta, M. Valiev, F. Xu, B.A. Simmons, S. Singh, One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids, Green Chem. 19 (13) (2017) 3152–3163. [11] Z.L. Yang, Z.S. Zhang, Recent advances on production of 2, 3-butanediol using engineered microbes, Biotechnol. Adv. 37 (4) (2019) 569–578. [12] J.J. Zhou, J.T. Shen, X.L. Wang, Y.Q. Sun, Z.L. Xiu, Stability and oscillatory behavior of microbial consortium in continuous conversion of crude glycerol to 1,3-propanediol, Appl. Microbiol. Biotechnol. 102 (19) (2018) 8291–8305. [13] Y.Q. Sun, Z.Z. Xu, Y.F. Zheng, J.J. Zhou, Z.L. Xiu, Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15, Process Biochem. 81 (2019) 132–138. [14] Y.Q. Sun, Y.F. Zheng, X.L. Wang, J.J. Zhou, Z.L. Xiu, Fermentation performance and mechanism of a novel microbial consortium DUT08 for 1,3-propandiol production from biodiesel-derived crude glycerol under non-strictly anaerobic conditions, Process Biochem. 83 (2019) 27–34. [15] X.L. Wang, J.J. Zhou, Y.Q. Sun, Z.L. Xiu, Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to 1,3-propanediol and lactate by a microbial consortium, Front. Bioeng. Biotechnol. 7 (2019) 14. [16] Y.Q. Sun, X.X. Zhang, Y.F. Zheng, L. Yan, Z.L. Xiu, Sugaring-out extraction combining crystallization for recovery of succinic acid, Sep. Purif. Tech. 209 (2019) 972–983. [17] J.Y. Dai, L.H. Ma, Z.F. Wang, W.T. Guan, Z.L. Xiu, Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation, Bioprocess Biosyst. Eng. 40 (3) (2017) 423–429. [18] L. Yan, Y.Q. Sun, Z.L. Xiu, Sugaring-out extraction coupled with fermentation of lactic acid, Sep. Purif. Technol. 161 (2016) 152–158. [19] J.Y. Dai, C.J. Liu, Z.L. Xiu, Sugaring-out extraction of 2,3-butanediol from fermentation broths, Process Biochem. 50 (11) (2015) 1951–1957. [20] C. Fu, Z. Li, Z. Sun, S. Xie, A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals, Front. Chem. Sci. Eng. (2020), https://doi.org/10.1007/s11705-020-1980-3. [21] Z.L. Xiu, A.P. Zeng, Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol, Appl. Microbiol. Biotechnol. 78 (6) (2008) 917–926. [22] L. Yan, H.X. Fu, X.D. Wang, Y.Q. Sun, J.Y. Dai, Z.L. Xiu, Recent advances on recovery and separation of biomass-based organic acids, Chin. J. Process Eng. 18 (1) (2018) 1–10 (in Chinese). [23] J.Y. Dai, Y.Q. Sun, Z.L. Xiu, Separation of bio-based chemicals from fermentation broths by salting-out extraction, Eng. Life Sci. 14 (2) (2014) 108–117. [24] B. Jiang, Z.G. Li, J.Y. Dai, D.J. Zhang, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system, Process Biochem. 44 (1) (2009) 112–117. [25] Z.G. Li, B. Jiang, D.J. Zhang, Z.L. Xiu, Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol. 66 (3) (2009) 472–478. [26] L.H. Sun, B. Jiang, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system, Biotechnol. Lett. 31 (3) (2009) 371–376. [27] Y.J. Li, Y.Y. Wu, J.W. Zhu, J.X. Liu, Separation of 2,3-butanediol from fermentation broth by reactive-extraction using acetaldehyde-cyclohexane system, Biotechnol. Bioproc. E 17 (2) (2012) 337–345. [28] J.J. Malinowski, Reactive extraction for downstream separation of 1,3-propanediol, Biotechnol. Progr. 16 (1) (2000) 76–79. [29] J. Hao, H.J. Liu, D.H. Liu, Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution, Ind. Eng. Chem. Res. 44 (12) (2005) 4380–4385. [30] A. Muller, A. Gorak, Extraction of 1,3-propanediol from aqueous solutions using different ionic liquid-based aqueous two-phase systems, Sep. Purif. Technol. 97 (2012) 130–136. [31] S.Y. Lee, I. Khoiroh, C.W. Ooi, T.C. Ling, P.L. Show, Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems, Sep. Purif. Rev. 46 (4) (2017) 291–304. [32] H. Passos, M.G. Freire, J.A.P. Coutinho, Ionic liquid solutions as extractive solvents for value-added compounds from biomass, Green Chem. 16 (2014) 4786–4815. [33] G. Cevasco, C. Chiappe, Are ionic liquids a proper solution to current environmental challenges? Green Chem. 16 (2014) 2375–2385. [34] Z.Y. Li, Y.C. Pei, H.Y. Wang, J. Fan, J.J. Wang, Ionic liquid-based aqueous twophase systems and their applications in green separation processes, TracTrend. Anal. Chem. 29 (11) (2010) 1336–1346. [35] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (21) (2014) 11060–11082. [36] S.P.M. Ventura, F.A.E. Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends, Chem. Rev. 117 (10) (2017) 6984–7052. [37] T. Wang, W.J. Xu, S.X. Wang, P. Kou, P. Wang, X.Q. Wang, Y.J. Fu, Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with aqueous two-phase system, Food Bioprod. Process. 105 (2017) 205–214. [38] R. Millati, R. Wikandari, T. Ariyanto, R.U. Putri, M.J. Taherzadeh, Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks, Bioresour. Technol. 304 (2020) 122998. [39] W.Y. Lee, K.S. Kim, J.K. You, Y.K. Hong, Effect of cations in ionic liquids on the extraction characteristics of 1,3-propanediol by ionic liquid -based aqueous biphasic systems, ACS Sustainable Chem. Eng. 4 (2) (2016) 572–576. [40] A.I. Pratiwi, T. Yokouchi, M. Matsumoto, K. Kondo, Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts, Sep. Purif. Technol. 155 (2015) 127–132. [41] Y.Q. Sun, S.S. Zhang, X.X. Zhang, Y.F. Zheng, Z.L. Xiu, Ionic liquid-based sugaring-out and salting-out extraction of succinic acid, Sep. Purif. Technol. 204 (2018) 133–140. [42] Y. Li, J.Y. Dai, Z.L. Xiu, Salting-out extraction of acetoin from fermentation broths using hydroxylammonium ionic liquids as extractants, Sep. Purif. Technol. 240 (2020) 116584. [43] J.Y. Dai, H. Wang, Y. Li, Z.L. Xiu, Imidazolium ionic liquids-based salting-out extraction of 2,3-butanediol from fermentation broths, Process Biochem. 71 (2018) 175–181. [44] X.H. Liu, M. Rebros, I. Dolejs, A.C. Marr, Designing ionic liquids for the extraction of alcohols from fermentation broth: phosphonium alkanesulfonates, solvents for diol extraction, ACS Sustainable Chem. Eng. 5 (9) (2017) 8260–8268. [45] H. Yu, K. Cui, T.H. Li, Z.D. Zhang, Z.Y. Zhou, Z.Q. Ren, Recovery of butanol from ABE fermentation broth with hydrophobic functionalized ionic liquids as extractants, ACS Sustainable Chem. Eng. 7 (10) (2019) 9318–9329. [46] Y.T. Tan, A.S.M. Chua, G.C. Ngoh, Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products –a review, Bioresour. Technol. 297 (2020) 122522. [47] H. Xu, J.P. Peng, Y. Kong, Y. Liu, Z.N. Su, B. Li, X.M. Song, S.W. Liu, W.D. Tian, Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review, Bioresour. Technol. 310 (2020) 123416. [48] M.G. Freire, A.F.M. Claudio, J.M.M. Araujo, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes, L.P.N. Rebelo, Aqueous biphasic systems: a boost brought about by using ionic liquids, Chem. Soc. Rev. 41 (14) (2012) 4966–4995. [49] P.G. Jessop, D.A. Jessop, D.B. Fu, L. Phan, Solvatochromic parameters for solvents of interest in green chemistry, Green Chem. 14 (5) (2012) 1245–1259. [50] A.F.M. Claudio, A.M. Ferreira, S. Shahriari, M.G. Freire, J.A.P. Coutinho, Critical assessment of the formation of ionic-liquid-based aqueous two-phase systems in acidic media, J. Phys. Chem. B 115 (38) (2011) 11145–11153. [51] C.Y. He, S.H. Li, H.W. Liu, K. Li, F. Liu, Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt, J. Chromatogr. A 1082 (2) (2005) 143–149. [52] M.T. Zafarani-Moattar, S. Hamzehzadeh, Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T = 298.15K, Fluid Phase Equilibr. 304 (2011) 110–120. [53] A. Muller, R. Schulz, J. Wittmann, I. Kaplanow, A. Gorak, Investigation of a phosphate/1-butyl-3-methylimidazolium trifluoromethanesulfonate/water system for the extraction of 1,3-propanediol from fermentation broth, RSC Adv. 3 (2013) 148–156. [54] W.Y. Lee, Y.K. Hong, Liquid extraction of succinic acid by aqueous two-phase systems composed of piperidinium ionic liquids and phosphate salt, Korean Chem. Eng. Res. 54 (1) (2016) 52–56. [55] K. Tonova, I. Svinyarov, M.G. Bogdanov, Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery, Sep. Purif. Technol. 125 (2014) 239–246. [56] E. Reyhanitash, T. Brouwer, S.R.A. Kersten, A.G.J. van der Ham, B. Schuur, Liquid-liquid extraction-based process concepts for recovery of carboxylic acids from aqueous streams evaluated for dilute streams, Chem. Eng. Res. Des. 137 (2018) 510–533. [57] J. Martak, S. Schlosser, Phosphonium ionic liquids as new, reactive extractants of lactic acid, Chem. Pap. 60 (5) (2006) 395–398. [58] F.S. Oliveira, J.M.M. Araujo, R. Ferreira, L.P.N. Rebelo, I.M. Marrucho, Extraction of L-lactic, L-malic, and succinic acids using phosphonium-based ionic liquids, Sep. Purif. Technol. 85 (2012) 137–146. [59] Y.G. Bai, R.Y. Yan, W.H. Tu, J.G. Qian, H.S. Gao, X.P. Zhang, S.J. Zhang, Selective separation of methacrylic acid and acetic acid from aqueous solution using carboxyl-functionalized ionic liquids, ACS Sustainable Chem. Eng. 6 (1) (2018) 1215–1224. [60] E. Reyhanitash, E. Fufachev, K.D. van Munster, M.B.M. van Beek, L.M.J. Sprakel, C.N. Edelijn, B.M. Weckhuysen, S.R.A. Kersten, P.C.A. Bruijnincx, B. Schuur, Recovery and conversion of acetic acid from a phosphonium phosphinate ionic liquid to enable valorization of fermented wastewater, Green Chem. 21 (8) (2019) 2023–2034. [61] J.A. Sun, B. Rao, L.Y. Zhang, Y.L. Shen, D.Z. Wei, Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system, Chem. Eng. Commun. 199 (11) (2012) 1492–1503. [62] Z.G. Li, H. Teng, Z.L. Xiu, Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system, Process Biochem. 46 (2) (2011) 586–591. [63] Z.G. Li, H. Teng, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system, Process Biochem. 45 (5) (2010) 731–737. [64] J.Y. Dai, W.T. Guan, L.H. Ma, Z.L. Xiu, Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4, Sep. Purif. Technol. 184 (2017) 275–279. [65] Z.G. Li, Y.Q. Sun, W.L. Zheng, H. Teng, Z.L. Xiu, A novel and environmentfriendly bioprocess of 1,3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system, Biochem. Eng. J. 80 (2013) 68–75. [66] M. Zawadzki, F.A.E. Silva, U. Domanska, J.A.P. Coutinho, S.P.M. Ventura, Recovery of an antidepressant from pharmaceutical wastes using ionic liquid-based aqueous biphasic systems, Green Chem. 18 (12) (2016) 3527–3536. [67] C.J. Zhu, T. Shen, D. Liu, J.L. Wu, Y. Chen, L.F. Wang, K. Guo, H.J. Ying, P.K. Ouyang, Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose, Green Chem. 18 (7) (2016) 2165–2174. [68] Z. Usmani, M. Sharma, P. Gupta, Y. Karpichev, N. Gathergood, R. Bhat, V.K. Gupta, Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion, Bioresour. Technol. 304 (2020) 123003. [69] Y.J. Cao, R.B. Zhang, T. Cheng, J. Guo, M. Xian, H.Z. Liu, Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives, Appl. Microbiol. Biotechnol. 101 (2) (2017) 521–532. [70] J. Shi, J.M. Gladden, N. Sathitsuksanoh, P. Kambam, L. Sandoval, D. Mitra, S. Zhang, A. George, S.W. Singer, B.A. Simmons, S. Singh, One-pot ionic liquid pretreatment and saccharification of switchgrass, Green Chem. 15 (2013) 2579–2589. [71] C. Yu, B.A. Simmons, S.W. Singer, M.P. Thelen, J.S. VanderGheynst, Ionic liquidtolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts, Appl. Microbiol. Biotechnol. 100 (2016) 10237–10249. [72] J. Grewal, S.K. Khare, One-pot bioprocess for lactic acid production from lignocellulosic agrowastes by using ionic liquid stable Lactobacillus brevis, Bioresour. Technol. 251 (2018) 268–273. [73] M.J. Liszka, A. Kang, N.V.S.N.M. Konda, K. Tran, J.M. Gladden, S. Singh, J.D. Keasling, C.D. Scown, T.S. Lee, B.A. Simmons, K.L. Sale, Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel, Green Chem. 18 (14) (2016) 4012–4021. [74] A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, A.J. Ragauskas, Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities, Biotechnol. Adv. 36 (8) (2018) 2032–2050. [75] X.J. Shen, J.L. Wen, Q.Q. Mei, X. Chen, D. Sun, T.Q. Yuan, R.C. Sun, Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization, Green Chem. 21 (2) (2019) 275–283. [76] Y.T. Tan, G.C. Ngoh, A.S.M. Chua, Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin, Bioresour. Technol. 281 (2019) 359–366. [77] M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Are deep eutectic solvents benign or toxic? Chemosphere 90 (7) (2013) 2193–2195. [78] A.A.N. Gunny, D. Arbain, E.M. Nashef, P. Jamal, Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis, Bioresour. Technol. 181 (2015) 297–302. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[5] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[6] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[7] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[8] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 34-45. |
[9] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[10] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[11] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[12] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[13] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[14] | Wenjie Xiong, Mingzhen Shi, Yan Lu, Xiaomin Zhang, Xingbang Hu, Zhuoheng Tu, Youting Wu. Efficient conversion of H2S into mercaptan alcohol by tertiary-amine functionalized ionic liquids [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 197-204. |
[15] | Yuxin Wu, Zhuo Chen, Xiaohui Zhang, Jian Chen, Yundong Wang, Jianhong Xu. Kinetic study of CO2 fixation into propylene carbonate with water as efficient medium using microreaction system [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 247-253. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 280
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||