Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 4-13.DOI: 10.1016/j.cjche.2020.12.009
Previous Articles Next Articles
Xin Wang1,2, Siyuan Gao1, Jing Wang1, Sheng Xu1, Hui Li1, Kequan Chen1, Pingkai Ouyang1
Received:
2020-10-15
Revised:
2020-12-05
Online:
2021-05-15
Published:
2021-02-28
Contact:
Pingkai Ouyang
Supported by:
Xin Wang1,2, Siyuan Gao1, Jing Wang1, Sheng Xu1, Hui Li1, Kequan Chen1, Pingkai Ouyang1
通讯作者:
Pingkai Ouyang
基金资助:
Xin Wang, Siyuan Gao, Jing Wang, Sheng Xu, Hui Li, Kequan Chen, Pingkai Ouyang. The production of biobased diamines from renewable carbon sources: Current advances and perspectives[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 4-13.
Xin Wang, Siyuan Gao, Jing Wang, Sheng Xu, Hui Li, Kequan Chen, Pingkai Ouyang. The production of biobased diamines from renewable carbon sources: Current advances and perspectives[J]. 中国化学工程学报, 2021, 29(2): 4-13.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.12.009
[1] Y. Jiang, K. Loos, Enzymatic synthesis of biobased polyesters and polyamides, Polymers 8 (2016)243. [2] M. Winnacker, B. Rieger, Biobased polyamides: recent advances in basic and applied research, Macromol. Rapid Commun. 37 (2016) 1391–1413. [3] M. Gilbert, Chapter 18 - Aliphatic Polyamides, in: M.B.T.-B.P.M. (Eighth E. Gilbert (Ed.), Butterworth-Heinemann, 2017, pp. 487–511. [4] S. Kind, C. Wittmann, Bio-based production of the platform chemical 1,5-diaminopentane, Appl. Microbiol. Biotechnol. 91 (2011) 1287–1296. [5] H. Chung, J.E. Yang, J.Y. Ha, T.U. Chae, J.H. Shin, M. Gustavsson, S.Y. Lee, Biobased production of monomers and polymers by metabolically engineered microorganisms, Curr. Opin. Biotechnol. 36 (2015) 73–84. [6] V.F. Wendisch, M. Mindt, F. Pérez-García, Biotechnological production of mono-and diamines using bacteria: recent progress, applications, and perspectives, Appl. Microbiol. Biotechnol. 102 (2018) 3583–3594. [7] Z. Li, Y.P. Shen, X.L. Jiang, L.S. Feng, J.Z. Liu, Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production, J. Ind. Microbiol. Biotechnol. 45 (2018) 123–139. [8] J. Shin, J.C. Joo, E. Lee, S.M. Hyun, H.J. Kim, S.J. Park, Y.H. Yang, K. Park, Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial Grade l-lysine, Appl. Biochem. Biotechnol. 185 (2018) 909–924. [9] Baritugo Kim, Kang Oh, Jang Jung, Kim Song, Hwang Lee, Park Joo Park, Highlevel conversion of l-lysine into cadaverine by Escherichia coli whole cell biocatalyst expressing Hafnia alvei L-lysine decarboxylase, Polymers (Basel) 11 (2019) 1184. [10] T.U. Chae, W.J. Kim, S. Choi, S.J. Park, S.Y. Lee, Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine, Sci. Rep. 5 (2015) 1–13. [11] J. Schneider, V.F. Wendisch, Putrescine production by engineered Corynebacterium glutamicum, Appl. Microbiol. Biotechnol. 88 (2010) 859–868. [12] H. Choi, H.H. Kyeong, J.M. Choi, H.S. Kim, Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine, Appl. Microbiol. Biotechnol. 98 (2014) 7483–7490. [13] E.Y. Hong, J.Y. Kim, R. Upadhyay, B.J. Park, J.M. Lee, B.G. Kim, Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis, J. Biotechnol. 281 (2018) 175–182. [14] C. Wang, K. Zhang, C. Zhongjun, H. Cai, W. Honggui, P. Ouyang, Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production, Biotechnol. Bioprocess Eng. 20 (2015) 439–446. [15] E.Y. Hong, S.G. Lee, B.J. Park, J.M. Lee, H. Yun, B.G. Kim, Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine, Biotechnol. J. 12 (2017)1700278. [16] Z.G. Qian, X.X. Xia, S.Y. Lee, Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine, Biotechnol. Bioeng. 104 (2009) 651–662. [17] W. Ma, W. Cao, H. Zhang, K. Chen, Y. Li, P. Ouyang, Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB, Biotechnol. Lett. 37 (2015) 799–806. [18] A.Q.D. Nguyen, J. Schneider, V.F. Wendisch, Elimination of polyamine Nacetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum, J. Biotechnol. 201 (2015) 75–85. [19] Z. Li, J.Z. Liu, Transcriptomic changes in response to putrescine production in Metabolically engineered Corynebacterium glutamicum, Front. Microbiol. 8 (2017) 1–11. [20] W. Ma, W. Cao, B. Zhang, K. Chen, Q. Liu, Y. Li, P. Ouyang, Engineering a pyridoxal 5’-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis, Sci. Rep. 5 (2015) 1–10. [21] A. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail, Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: towards original symmetrical bio-based(bis)aromatic monomers, J.Mol.Catal.BEnzym. 125 (2016) 34-41. [22] M. Fache, E. Darroman, V. Besse, R. Auvergne, S. Caillol, B. Boutevin, Vanillin, a promising biobased building-block for monomer synthesis, Green Chem.16 (2014)1987-1998. [23] E.A.B. da Silva, M. Zabkova, J.D. Araújo, C.A. Cateto, M.F. Barreiro, M.N. Belgacem, A.E. Rodrigues, An integrated process to produce vanillin and ligninbasedpolyurethanesfromKraftlignin,Chem.Eng.Res.Des.87 (2009)1276-1292. [24] C.W. Tabor, H. Tabor, Polyamines in microorganisms, Microbiol. Rev. 49 (1985) 81–99. [25] V.V. Dasu, Y. Nakada, M. Ohnishi-Kameyama, K. Kimura, Y. Itoh, Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism, Microbiology. 152 (2006) 2265–2272. [26] H. Ikai, S. Yamamoto, Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii, J. Bacteriol. 179 (1997) 5118–5125. [27] H. Ikai, S. Yamamoto, Cloning and expression in Escherichia coli of the gene encoding a novel l-2,4-diaminobutyrate decarboxylase of Acinetobacter baumannii, FEMS Microbiol. Lett. 124 (1994) 225–228. [28] E. Scott, F. Peter, J. Sanders, Biomass in the manufacture of industrial productsthe use of proteins and amino acids, Appl. Microbiol. Biotechnol. 75 (2007) 751–762. [29] M. Noh, S.M. Yoo, W.J. Kim, S.Y. Lee, Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli, Cell Syst. 5 (2017) 418–426.e4. [30] J. Schneider, D. Eberhardt, V.F. Wendisch, Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system, Appl. Microbiol. Biotechnol. 95 (2012) 169–178. [31] A.Q.D. Nguyen, J. Schneider, G.K. Reddy, V.F. Wendisch, Fermentative production of the diamine Putrescine: system metabolic engineering of corynebacterium glutamicum, Metabolites 5 (2015) 211–231. [32] H.J. Kim, Y.H. Kim, J.H. Shin, S.K. Bhatia, G. Sathiyanarayanan, H.M. Seo, K.Y. Choi, Y.H. Yang, K. Park, Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration, J. Microbiol. Biotechnol. 25 (2015) 1108–1113. [33] W. Soksawatmaekhin, A. Kuraishi, K. Sakata, K. Kashiwagi, K. Igarashi, Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli, Mol. Microbiol. 51 (2004) 1401–1412. [34] S. Choi, C.W. Song, J.H. Shin, S.Y. Lee, Biorefineries for the production of top building block chemicals and their derivatives, Metab. Eng. 28 (2015) 223–239. [35] E.W. Hafner, C.W. Tabor, H. Tabor, Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine, J. Biol. Chem. 254 (1979) 12419–12426. [36] Z.G. Qian, X.X. Xia, S.Y. Lee, Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine, Biotechnol. Bioeng. 108 (2011) 93–103. [37] D. Na, S.M. Yoo, H. Chung, H. Park, J.H. Park, S.Y. Lee, Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nat. Biotechnol. 31 (2013) 170–174. [38] T. Mimitsuka, H. Sawai, M. Hatsu, K. Yamada, Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation, Biosci. Biotechnol. Biochem. 71 (2007) 2130–2135. [39] S. Kind, W.K. Jeong, H. Schröder, C. Wittmann, Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane, Metab. Eng. 12 (2010) 341–351. [40] Y.H. Oh, J.W. Choi, E.Y. Kim, B.K. Song, K.J. Jeong, K. Park, I.K. Kim, H.M. Woo, S. H. Lee, S.J. Park, Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum, Appl. Biochem. Biotechnol. 176 (2015) 2065–2075. [41] H.T. Kim, K.A. Baritugo, Y.H. Oh, S.M. Hyun, T.U. Khang, K.H. Kang, S.H. Jung, B. K. Song, K. Park, I.K. Kim, M.O. Lee, Y. Kam, Y.T. Hwang, S.J. Park, J.C. Joo, Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510, ACS Sustain. Chem. Eng. 6 (2018) 5296–5305. [42] S. Kind, W.K. Jeong, H. Schröder, O. Zelder, C. Wittmann, Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum, Appl. Environ. Microbiol. 76 (2010) 5175–5180. [43] S. Kind, S. Kreye, C. Wittmann, Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum, Metab. Eng. 13 (2011) 617–627. [44] M. Li, D. Li, Y. Huang, M. Liu, H. Wang, Q. Tang, F. Lu, Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter, J. Ind. Microbiol. Biotechnol. 41 (2014) 701–709. [45] N. Buschke, H. Schröder, C. Wittmann, Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose, Biotechnol. J. 6 (2011) 306–317. [46] N. Buschke, J. Becker, R. Schäfer, P. Kiefer, R. Biedendieck, C. Wittmann, Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane, Biotechnol. J. 8 (2013) 557–570. [47] M.R. Antoniewicz, Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production, Curr. Opin. Biotechnol. 59 (2019) 165–174. [48] J. Schrader, M. Schilling, D. Holtmann, D. Sell, M.V. Filho, A. Marx, J.A. Vorholt, Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria, Trends Biotechnol. 27 (2009) 107–115. [49] M. Bertau, H. Offermanns, L. Plass, F. Schmidt, H.J. Wernicke, Methanol: The basic chemical and energy feedstock of the future, Springer, Berlin, 2014, https://doi.org/10.1007/978-3-642-39709-7. [50] S. Witthoff, K. Schmitz, S. Niedenführ, K. Nöh, S. Noack, M. Bott, J. Marienhagen, Metabolic engineering of Corynebacterium glutamicum for methanol metabolism, Appl. Environ. Microbiol. 81 (2015) 2215–2225. [51] L. Leßmeier, J. Pfeifenschneider, M. Carnicer, S. Heux, J.C. Portais, V.F. Wendisch, Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as cosubstrate, Appl. Microbiol. Biotechnol. 99 (2015) 10163–10176. [52] M.K. Lau, Methods and microorganisms for the biological synthesis of (s)-2-amino-6-hydroxypimelate, hexamethylenediamine and 6-aminocaproate, US Pat. 13/055,950 (2015). [53] A.V.E. Conradie, A.L. Botes, Methods of producing 6-carbon chemicals via CoAdependent carbon chain elongation associated with carbon storage, US Pat. 14/666055 (2015). [54] L.W. McKeen, Polyamides (Nylons), in: Film Prop. Plast. Elastomers, 3rd edition., Elsevier, 2012, https://doi.org/10.1016/b978-1-4557-2551-9.00008-6. [55] S. Klatte, V.F. Wendisch, Redox self-sufficient whole cell biotransformation for amination of alcohols, Bioorganic Med. Chem. 22 (2014) 5578–5585. [56] S. Sung, H. Jeon, S. Sarak, M.M. Ahsan, M.D. Patil, W. Kroutil, B.G. Kim, H. Yun, Parallel anti-sense two-step cascade for alcohol amination leading to x-amino fatty acids and a, x-diamines, Green Chem. 20 (2018) 4591–4595. [57] P.F.H. Harmsen, M.M. Hackmann, H.L. Bos, Green building blocks for bio-based plastics, Biofuels Bioprod. Biorefining. (2014), https://doi.org/10.1002/bbb.1468. [58] J.D.P. Araújo, C.A. Grande, A.E. Rodrigues, Vanillin production from lignin oxidation in a batch reactor, Chem. Eng. Res. Des. (2010), https://doi.org/10.1016/j.cherd.2010.01.021. [59] E. Savonnet, C. Le Coz, E. Grau, S. Grelier, B. Defoort, H. Cramail, Divanillinbased aromatic amines: synthesis and use as curing agents for fully vanillinbased epoxy thermosets, Front. Chem. (2019), https://doi.org/10.3389/fchem.2019.00606. [60] C. Voirin, S. Caillol, N.V. Sadavarte, B.V. Tawade, B. Boutevin, P.P. Wadgaonkar, Functionalization of cardanol: towards biobased polymers and additives, Polym. Chem. (2014), https://doi.org/10.1039/c3py01194a. [61] V. Froidevaux, C. Negrell, S. Caillol, J.P. Pascault, B. Boutevin, Biobased amines: from synthesis to polymers; present and future, Chem. Rev. (2016), https://doi.org/10.1021/acs.chemrev.6b00486. [62] M.H.S.A. Hamid, P.A. Slatford, J.M.J. Williams, Borrowing hydrogen in the activation of alcohols, Adv. Synth. Catal. (2007), https://doi.org/10.1002/adsc.200600638. [63] R.D. Shingte, B.V. Tawade, P.P. Wadgaonkar, Partially biobased processable polyimides based on aromatic diamine derived from cardanol, Green Mater. (2017), https://doi.org/10.1680/jgrma.17.00010. [64] N.V. Sadavarte, M.R. Halhalli, C.V. Avadhani, P.P. Wadgaonkar, Synthesis and characterization of new polyimides containing pendent pentadecyl chains, Eur. Polym. J. (2009), https://doi.org/10.1016/j.eurpolymj.2008.11.013. [65] M.N. Belgacem, A. Gandini, Monomers, polymers and composites from Renewable, Resources, Elsevier Science (2008), https://doi.org/10.1016/B978-0-08-045316-3.X0001-4. [66] Mckeever C.H., Washburne R.N., Process for the preparation of menthane diamine, USA, Pat. 2955138, 1960. [67] M.D. Garrison, B.G. Harvey, Bio-based hydrophobic epoxy-amine networks derived from renewable terpenoids, J. Appl. Polym. Sci. (2016), https://doi.org/10.1002/app.43621. [68] K. Marchildon, Polyamides-still strong after seventy years, Macromol. React. Eng. 5 (2011) 22–54. [69] S. Kind, S. Neubauer, J. Becker, M. Yamamoto, M. Völkert, G. von Abendroth, O. Zelder, C. Wittmann, From zero to hero-production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum, Metab. Eng. 25 (2014) 113–123. [70] C.M. Rohles, L. Gläser, M. Kohlstedt, G. Gießelmann, S. Pearson, A. Del Campo, J. Becker, C. Wittmann, A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered: Corynebacterium glutamicum, Green Chem. 20 (2018) 4662–4674. [71] D.R. Vardon, M.A. Franden, C.W. Johnson, E.M. Karp, M.T. Guarnieri, J.G. Linger, M.J. Salm, T.J. Strathmann, G.T. Beckham, Adipic acid production from lignin, Energy Environ. Sci. 8 (2015) 617–628. [72] D.S. Ogunniyi, Castor oil: a vital industrial raw material, Bioresour. Technol. 97 (2006) 1086–1091. [73] Y.A. Eltahir, H.A.M. Saeed, Y.M. Xia, Y.M. Wang, Preparation of polyamide 5,6 (PA56) fibers and its mechanical properties, Adv. Mater. Res. 937 (2014) 86–91. [74] Y.A. Eltahir, H.A.M. Saeed, Y. Xia, H. Yong, W. Yimin, Mechanical properties, moisture absorption, and dyeability of polyamide 5,6 fibers, J. Text. Inst. 107 (2016) 208–214. [75] Y.A. Eltahir, H.A.M. Saeed, C. Yuejun, Y. Xia, W. Yimin, Effect of hot drawing on the structure and properties of novel polyamide 5,6 fibers, Text. Res. J. 84 (2014) 1700–1707. [76] F.N. Mutua, T. Yang, Y. Gao, Y. He, A novel high-performance biobased polyamide, SPE Plast. Res. Online (2017), https://doi.org/10.2417/spepro.006933. [77] X. Cui, D. Yan, Synthesis and characterization of novel odd-even nylons based on eicosanedioic acid, J. Appl. Polym. Sci. 93 (2004) 2066–2071. [78] C. Fang, X. Zhou, Q. Yu, S. Liu, D. Guo, R. Yu, J. Hu, Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder, Prog. Org. Coatings 77 (2014) 61–71. [79] S. Miao, L. Sun, P. Wang, R. Liu, Z. Su, S. Zhang, Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility, Eur. J. Lipid Sci. Technol. 114 (2012) 1165–1174. [80] R. Udagama, E. Degrandi-Contraires, C. Creton, C. Graillat, T.F.L. McKenna, E. Bourgeat-Lami, Synthesis of acrylic-polyurethane hybrid latexes by miniemulsion polymerization and their pressure-sensitive adhesive applications, Macromolecules 44 (2011) 2632–2642. [81] A. Ali, K. Yusoh, S.F. Hasany, Synthesis and physicochemical behaviour of polyurethane-multiwalled carbon nanotubes nanocomposites based on renewable castor oil polyols, J. Nanomater. (2014), https://doi.org/10.1155/2014/564384. [82] T. Hidesaki, A. Natsuji, T. Nakagawa, G. Kuwamura, D. Hasegawa, S. Yamasaki, K. Sato, H. Takeuchi, Method for producing 1,5-pentamethylene diamine, 1,5-pentamethylene diamine, 1,5-pentamethylene diisocyanate, method for producing 1,5-pentamethylene diisocyanate,polyisocyanate composition, and polyurethane resin, US Pat. 13/581554 (2013). [83] J. Feng, X. Wang, P. Guo, Y. Wang, X. Luo, Mechanical properties and wear resistance of sulfonated graphene/waterborne polyurethane composites prepared by in situ method, Polymers 10 (2018), https://doi.org/10.3390/polym10010075. |
[1] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[2] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[3] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[4] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[5] | Abid Ali, Bilal Ul Amin, Wenwu Yu, Taijiang Gui, Weiwei Cong, Kai Zhang, Zheming Tong, Jiankun Hu, Xiaoli Zhan, Qinghua Zhang. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 80-88. |
[6] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[7] | Wenbo Yang, Qingyun Li, Shiqi Guo, Shijie Sun, Aixing Tang, Haibo Liu, Youyan Liu. Rational design of Aspergillus flavus A5p1-immobilized cell system to enhance the decolorization of reactive blue 4 (RB4) [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 37-44. |
[8] | Shujie Guo, Jiao Du, Fangzheng Yan, Zhi Wang, Jixiao Wang. Fabrication of anti-fouling polyamide nanofiltration membrane by incorporating streptomycin as a novel co-monomer [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 185-196. |
[9] | Abid Ali, Lina Song, Jiankun Hu, Jingxian Jiang, Qingqing Rao, Muhammad Shoaib, Shah Fahad, Yongjie Cai, Xiaoli Zhan, Fengqiu Chen, Qinghua Zhang. Synthesis and characterization of caprolactone based polyurethane with degradable and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 299-306. |
[10] | Yanjie Wu, Changfa Xiao, Hailiang Liu, Qinglin Huang. Fabrication and characterization of novel foaming polyurethane hollow fiber membrane [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 935-943. |
[11] | Gholamhossein Sodeifian, Mojtaba Raji, Morteza Asghari, Mashallah Rezakazemi, Amir Dashti. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation [J]. Chin.J.Chem.Eng., 2019, 27(2): 322-334. |
[12] | Huiwen Meng, Tao Yan, Jingang Yu, Feipeng Jiao. Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation [J]. Chin.J.Chem.Eng., 2018, 26(5): 957-963. |
[13] | Misagh Ahmadi, Sara Masoumi, Shadi Hassanajili, Feridun Esmaeilzadeh. Modification of PES/PU membrane by supercritical CO2 to enhance CO2/CH4 selectivity: Fabrication and correlation approach using RSM [J]. Chin.J.Chem.Eng., 2018, 26(12): 2503-2515. |
[14] | Zhongqiang Wang, Guosheng Hu, Jingting Zhang, Jiusheng Xu, Wenbo Shi. Non-isothermal crystallization kinetics of Nylon 10T and Nylon 10T/1010 copolymers:Effect of sebacic acid as a third comonomer [J]. , 2017, 25(7): 963-970. |
[15] | Shadi Hasanajili, Masoud Latifzadeh, Mahmoud Bahmani. Permeation properties of CO2 and CH4 in asymmetric polyethersulfone/polyesterurethane and polyethersulfone/polyetherurethane blend membranes [J]. Chin.J.Chem.Eng., 2017, 25(12): 1750-1759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||