Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 103-112.DOI: 10.1016/j.cjche.2020.10.034
Previous Articles Next Articles
Kai Ge1, Yuanhui Ji1, Xiaohua Lu2
Received:
2020-08-26
Revised:
2020-10-27
Online:
2021-05-13
Published:
2021-03-28
Contact:
Yuanhui Ji
Supported by:
Kai Ge1, Yuanhui Ji1, Xiaohua Lu2
通讯作者:
Yuanhui Ji
基金资助:
Kai Ge, Yuanhui Ji, Xiaohua Lu. A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 103-112.
Kai Ge, Yuanhui Ji, Xiaohua Lu. A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers[J]. 中国化学工程学报, 2021, 29(3): 103-112.
[1] L.S. Lin, T. Huang, J.B. Song, X.Y. Ou, Z.T. Wang, H.Z. Deng, R. Tian, Y.J. Liu, J.F. Wang, Y. Liu, G.C. Yu, Z.J. Zhou, S. Wang, G. Niu, H.H. Yang, X.Y. Chen, Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy, J. Am. Chem. Soc. 141 (2019) 9937-9945. [2] R. Serra-Maia, F.M. Michel, Y.J. Kang, E.A. Stach, Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol, ACS Catal. 10 (2020) 5115-5123. [3] Y. Cheng, Y.H. Ji, Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity, J. Control. Release 318 (2020) 38-49. [4] N.H. Wu, X.Y. Ji, R. An, C. Liu, X.H. Lu, Generalized Gibbs free energy of confined nanoparticles, AIChE J. 63 (2017) 4595-4603. [5] F. Zhang, Z.L. Xu, K. Wang, R.Z. Chen, Z.X. Zhong, W.H. Xing, Controllable preparation of ZnO porous flower through a membrane dispersion reactor and their photocatalytic properties, Chin. J. Chem. Eng. 26 (2018) 2192-2198. [6] D. Tichit, G. Layrac, C. Gérardin, Synthesis of layered double hydroxides through continuous flow processes: A review, Chem. Eng. J. 369 (2019) 302-332. [7] X.H. Liu, Q.W. Zhang, W. Knoll, B. Liedberg, Y. Wang, Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions, Adv. Mater. 32 (37) (2020), 2000866. [8] Z. Zhang, Y.H. Ji, Mesoporous manganese dioxide coated gold nanorods as a multiresponsive nanoplatform for drug delivery, Ind. Eng. Chem. Res. 8 (2019) 2991-2999. [9] J.Y. Choi, S.H. Lee, H.B. Na, K. An, T. Hyeon, T.S. Seo, In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines, Bioprocess. Biosyst. Eng. 33 (2009) 21-31. [10] J.Y. Weng, Y.P. Huang, D.L. Hao, Y.H. Ji, Recent advances of pharmaceutical crystallization theories, Chin. J. Chem. Eng. 28 (2019) 935-948. [11] D.A. Shah, S.B. Murdande, R.H. Dave, A. Review, Pharmaceutical and pharmacokinetic aspect of nanocrystalline suspensions, J. Pharm. Sci. 105 (2016) 10-24. [12] M. Imono, H. Uchiyama, H. Ueda, K. Kadota, Y. Tozuka, In-situ dissolution and permeation studies of nanocrystal formulations with second-derivative UV spectroscopy, Int. J. Pharm. 558 (2019) 242-249. [13] L. Lindfors, S. Forssén, P. Skantze, U. Skantze, A. Zackrisson, U. Olsson, Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations, Langmuir 22 (2006) 911-916. [14] B. Medasani, Y.H. Park, I. Vasiliev, Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles, Phys. Rev. B 75 (2007) 235436. [15] L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, The surface energy of metals, Sur. Sci. 411 (1998) 186-202. [16] G. Kaptay, The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science, Adv. Colloid Interface Sci. 256 (2018) 163-192. [17] B. Van Eerdenbrugh, J. Vermant, J.A. Martens, L. Froyen, J.V. Humbeeck, G. Van den Mooter, P. Augustijns, Solubility increases associated with crystalline drug nanoparticles: methodologies and significance, Mol. Pharm. 7 (2010) 1858-1870. [18] S.B. Murdande, D.A. Shah, R.H. Dave, Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals, J. Pharm. Sci. 104 (2015) 2094-2102. [19] C.Q. Zhang, Z.Q. Hu, B.L. Deng, Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms, Water Res. 88 (2016) 403-427. [20] Y. Wolanov, P.V. Prikhodchenko, A.G. Medvedev, R. Pedahzur, O. Lev, Zinc dioxide nanoparticles: a hydrogen peroxide source at moderate Ph, Environ. Sci. Technol. 15 (2013) 8769-8774. [21] K. Jiang, X.M. Liu, H.Y. He, J.J. Wang, S.J. Zhang, Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation, Soft Matter 16 (2020) 2605-2610. [22] J.P. Möschwitzer, Drug nanocrystals in the commercial pharmaceutical development process, Int. J. Pharm. 453 (2013) 142-156. [23] J.Y. Zhang, K. Higashi, W. Limwikrant, K. Moribe, K. Yamamoto, Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy, Int. J. Pharm. 423 (2012) 571-576. [24] Y. Hasegawa, K. Higashi, K. Yamatoto, K. Moribe, Direct evaluation of molecular states of piroxicam/poloxamer nanosuspension by suspendedstate NMR and Raman spectroscopies, Mol. Pharm. 12 (2015) 1564-1572. [25] T. Kojima, M. Karashima, K. Yamamoto, Y. Ikeda, Combination of NMR methods to reveal the interfacial structure of a pharmaceutical nanocrystal and nanococrystal in the suspended state, Mol. Pharm. 15 (2018) 3901-3908. [26] Q. Jiang, H.M. Lu, Size dependent interface energy and its applications, Surf. Sci. Rep. 63 (2008) 427-464. [27] I.A. Mudunkotuwa, T. Rupasinghe, C.M. Wu, V.H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid, Langmuir 28 (2011) 396-403. [28] K.E. Gubbins, Y. Long, M. Śliwinska-Bartkowiak, Thermodynamics of confined nano-phases, J. Chem. Thermodyn. 74 (2014) 169-183. [29] W.A. Steele, The physical interaction of gases with crystalline solids: I. Gassolid energies and properties of isolated adsorbed atoms, Surf. Sci. 36 (1973) 317-352. [30] R. Paus, A. Prudic, Y.H. Ji, Influence of excipients on solubility and dissolution of pharmaceuticals, Int. J. Pharm. 485 (2015) 277-287. [31] Y.H. Ji, A.K. Lesniak, A. Prudic, R. Paus, G. Sadowski, Drug release kinetics and mechanism from PLGA formulations, AIChE J. 62 (2016) 4055-4065. [32] Y.H. Ji, R. Paus, A. Prudic, C. Lübbert, G. Sadowski, A novel approach for analyzing the dissolution mechanism of solid dispersions, Pharm. Res. 32 (2015) 2559-2578. [33] Y.H. Ji, M. Lemberg, A. Prudic, R. Paus, G. Sadowski, Modeling and analysis of dissolution of paracetamol/Eudragit® formulations, Chem. Eng. Res. Des. 121 (2017) 22-31. [34] J. Gross, G. Sadowski, Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40 (2001) 1244-1260. [35] J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41 (2002) 5510-5515. [36] J.P. Wolbach, S.I. Sandler, Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures, Ind. Eng. Chem. Res. 37 (1998) 2917-2928. [37] T.S. Peretyazhko, Q. Zhang, V.L. Colvin, Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes, Environ. Sci. Technol. 48 (2014) 11954-11961. [38] R. Ma, C. Levard, S.M. Marinakos, Y. Cheng, J. Liu, F.M. Michel, G.E. Brown, G.V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol. 46 (2012) 752-759. [39] W. Zhang, Y. Yao, N. Sullivan, Y.S. Chen, Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics, Environ. Sci. Technol. 45 (2011) 4422-4428. [40] Z.R. Li, Q.S. Fu, Y.Q. Xue, Z.X. Cui, Effect of size on dissolution thermodynamics of nanoparticles: A theoretical and experimental research, Mater. Chem. Phys. 214 (2018) 499-506. [41] A. Shadloo, M. Abolala, K. Peyvandi, Application of ion-based ePC-SAFT in prediction of density of aqueous electrolyte solutions, J. Mol. Liq. 221 (2016) 904-913. [42] C. Neves, C. Held, S. Mohammad, M. Schleinitz, J.A.P. Coutinhoa, M.G. Freire, Effect of salts on the solubility of ionic liquids in water: Experimental and electrolyte perturbed-chain statistical associating fluid theory, Phys. Chem. Chem. Phys. 17 (2015) 32044-32052. [43] A. Prudic, Y.H. Ji, G. Sadowski, Thermodynamic phase behavior of API/polymer solid dispersions, Mol. Pharm. 11 (2014) 2294-2304. [44] A. Rammohan, J.A. Kaduk, Trisodium citrate, Na3(C6H5O7), Acta Crystal. 72 (2016) 793-796. [45] S.V. Dalvi, R.N. Dave, Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation, Int. J. Pharm. 387 (2010) 172-179. [46] K. Lehmkemper, S.O. Kyeremateng, M. Degenhardt, G. Sadowski, Influence of low-molecular-weight excipients on the phase behavior of PVPVA64 amorphous solid dispersions, Pharm. Res. 35 (2018) 25-39. [47] M. Otsuka, T. Ohfusa, Y. Matsuda, Effect of binders on polymorphic transformation kinetics of carbamazepine in aqueous solution, Colloid Surf. B-Biointerfaces 17 (2000) 145-152. [48] R. Paus, Y.H. Ji, L. Vahle, G. Sadowski, Predicting the solubility advantage of amorphous pharmaceuticals: a novel thermodynamic approach, Mol. Pharm. 12 (2015) 2823-2833. [49] J. Brinkmann, F. Rest, C. Luebbert, G. Sadowski, Solubility of pharmaceutical ingredients in natural edible oils, Mol. Pharm. 17 (2020) 2499-2507. [50] K. Lehmkemper, S.O. Kyeremateng, O. Heinzerling, M. Degenhardt, G. Sadowski, Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions, Mol. Pharm. 14 (2017) 4374-4386. [51] A.D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose 21 (2013) 885-896. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[4] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[5] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[8] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[9] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 173-182. |
[10] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[11] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[12] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[13] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[14] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[15] | Pengbao Lian, Lizhen Chen, Daozhen Huang, Jianxin Xu, Zishuai Xu, Cai Cao, Jiaxiang Zhao, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in eleven pure solvents [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 236-243. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||