[1] T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks:Energy use in steam cracking and alternative processes, Energy 31(2006) 425-451. [2] H. Li, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Simultaneous design of hydrogen allocation networks and PSA inside refineries, Ind. Eng. Chem. Res. 59(2020) 4712-4720. [3] X. Hong, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Indirect heat integration across plants:novel representation of intermediate fluid circles, Ind. Eng. Chem. Res. 58(2019) 7233-7246. [4] X.D. Hong, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams, Energy 178(2019) 853-866. [5] Y. Lou, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, A novel two-step method to design inter-plant hydrogen network, Int. J. Hydrogen Energy 44(2019) 5686-5695. [6] L. Wei, Y. Shen, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Balancing between risk and profit in refinery hydrogen networks:A worst-case conditional value-atrisk approach, Chem. Eng. Res. Des. 146(2019) 201-210. [7] L. Sun, G. Li, Q.S. Hua, Y. Jin, A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control, Renew. Energy 147(2020) 1642-1652. [8] L. Sun, J. Shen, Q. Hua, K.Y. Lee, Data-driven oxygen excess ratio control for proton exchange membrane fuel cell, Appl. Energy 231(2018) 866-875. [9] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chemie Int. Ed. 51(2012) 5810-5831. [10] R. Schlögl, Concepts in Selective Oxidation of Small Alkane Molecules, WileyVCH Weinheim, Weinheim, Germany, 2009. [11] J.J.H.B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides, Chem. Rev. 114(2014) 10613-10653. [12] Y. Ren, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Q. Wu, Molecular reconstruction:Recent progress toward composition modeling of petroleum fractions, Chem. Eng. J. 357(2019) 761-775. [13] M. Stöcker, Methanol-to-hydrocarbons:catalytic materials and their behavior, Microporous Mesoporous Mater. 29(1999) 3-48. [14] B. Zhou, Z. Liao, C. Mattea, S. Stapf, H. Jiao, L. Wang, Z. Zhuang, B. Jiang, J. Wang, Y. Yang, Solvents molecular mobility in coked catalyst ZSM-5 studied by NMR relaxation and pulsed field gradient techniques, Ind. Eng. Chem. Res. 57(2018) 6647-6653. [15] W. Wu, W. Guo, W. Xiao, M. Luo, Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5, Chem. Eng. Sci. 66(2011) 4722-4732. [16] B. Jiang, X. Feng, L. Yan, Y. Jiang, Z. Liao, J. Wang, Y. Yang, Methanol to propylene process in a moving bed reactor with byproducts recycling:kinetic study and reactor simulation, Ind. Eng. Chem. Res. 53(2014) 4623-4632. [17] X. Huang, D. Aihemaitijiang, W.-D. Xiao, Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst:a kinetic study, Chem. Eng. J. 286(2016) 150-164. [18] B. Jiang, B. Zhou, Y. Jiang, X. Feng, Z. Liao, Z. Huang, J. Wang, Y. Yang, Kinetic and regenerator modeling of the coke combustion in the moving bed MTP process, Chem. Eng. Res. Des. 122(2017) 52-62. [19] Z. Liao, T. Xu, Y. Jiang, B. Jiang, J. Wang, Y. Yang, Y. Jiao, Z. Yang, J. Zhang, Methanol to propylene over foam SiC-supported ZSM-5 catalyst:Performance of multiple reaction-regeneration cycles, Ind. Eng. Chem. Res. 58(2018) 27-33. [20] J. Binbo, Z. Bingjie, Y. Lixia, W. Lingze, X. Caixia, L. Zuwei, H. Zhengliang, W. Jingdai, Y. Yongrong, Effect of hydrothermal treatment on suppressing coking of ZSM-5 zeolite during methanol-to-propylene reaction, China Pet. Process. Petrochemical Technol. 18(2016) 7-13. [21] L. Yan, X. Yu, J. Wang, Y. Yang, Research progress of hierarchical zeolites for methanol to propylene reaction, Chem. Ind. Eng. Prog. 30(9) (2011) 1873. [22] K. Jiang, L.X. Yan, X.B. Yu, J.D. Wang, Y.R. Yang, Phosphorous modified high silica ZSM-5 spherical catalyst and its reaction on methanol to propylene, Trans. Beijing Inst. Technol. 31(2011) 1247-1251. [23] D. Chen, H.P. Rebo, A. Holmen, Diffusion and deactivation during methanol conversion over SAPO-34:A percolation approach, Chem. Eng. Sci. 54(1999) 3465-3473. [24] X. Huang, H. Li, H. Li, W. Xiao, Modeling and analysis of the Lurgi-type methanol to propylene process:Optimization of olefin recycle, AIChE J. 63(2017) 306-313. [25] F.Y.A. El-Kady, R. Mann, Fouling and deactivation of a FCC catalyst.:I. A wedgelayering analysis of the influence of catalyst particle size, LHSV and temperature, Appl. Catal. 3(1982) 211-234. [26] R. Mann, G. Thomson, Deactivation of a supported zeolite catalyst:simulation of diffusion, reaction and coke deposition in a parallel bundle, Chem. Eng. Sci. 42(1987) 555-563. [27] R. Mann, Catalyst deactivation by coke deposition:Approaches based on interactions of coke laydown with pore structure, Catal. Today 37(1997) 331-349. [28] R. Mann, P.N. Sharratt, G. Thomson, Deactivation of a supported zeolitic catalyst:Diffusion, reaction and coke deposition in stochastic pore networks, Chem. Eng. Sci. 41(1986) 711-718. [29] G. Ye, X. Zhou, W. Yuan, M. Coppens, Probing pore blocking effects on multiphase reactions within porous catalyst particles using a discrete model, AIChE J. 62(2016) 451-460. [30] G.F. Froment, Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation, Catal. Rev. 50(2008) 1-18. [31] F.J. Keil, Methanol-to-hydrocarbons:process technology, Microporous Mesoporous Mater. 29(1999) 49-66. [32] Z.M. Zhou, Z.M. Cheng, Z. Li, W.K. Yuan, Determination of effectiveness factor of a partial internal wetting catalyst from adsorption measurement, Chem. Eng. Sci. 59(2004) 4305-4311. [33] M. Sahimi, G.R. Gavalas, T.T. Tsotsis, Statistical and continuum models of fluidsolid reactions in porous media, Chem. Eng. Sci. 45(1990) 1443-1502. [34] G. Wang, E. Johannessen, C.R. Kleijn, S.W. de Leeuw, M.-O. Coppens, Optimizing transport in nanostructured catalysts:A computational study, Chem. Eng. Sci. 62(2007) 5110-5116. [35] F.J. Keil, Diffusion and reaction in porous networks, Catal. Today. 53(1999) 245-258. [36] H. Beigi, M. Dadvar, R. Halladj, Pore network model for catalytic dehydration of methanol at particle level, AIChE J. 55(2009) 442-449. [37] B. Liu, D. Slocombe, M. AlKinany, H. AlMegren, J. Wang, J. Arden, A. Vai, S. Gonzalez-Cortes, T. Xiao, V. Kuznetsov, Advances in the study of coke formation over zeolite catalysts in the methanol-to-hydrocarbon process, Appl. Petrochemical Res. 6(2016) 209-215. [38] Y. Zhang, M. Li, E. Xing, Y. Luo, X. Shu, Coke evolution on mesoporous ZSM-5 during methanol to propylene reaction, Catal. Commun. 119(2019) 67-70. [39] G. Mirth, J. Cejka, J. Krtil, J.A. Lercher, Deactivation and coking of HZSM5 catalysts during alkylation reactions, in:Stud. Surf. Sci. Catal, 88, Elsevier, Amsterdam (1994) 241-248. [40] A.K. Kapila, B.J. Matkowsky, Reactive-diffusive system with Arrhenius kinetics:the Robin problem, SIAM J. Appl. Math. 39(1980) 391-401. [41] T.V.W. Janssens, S. Svelle, U. Olsbye, Kinetic modeling of deactivation profiles in the methanol-to-hydrocarbons (MTH) reaction:A combined autocatalytic-hydrocarbon pool approach, J. Catal. 308(2013) 122-130. [42] A. Wheeler, Reaction rates and selectivity in catalyst pores, In, Adv. Catal., Elsevier (1951) 249-327. [43] X.M. Chen, J. Xiao, Y.P. Zhu, Z.H. Luo, Intraparticle mass and heat transfer modeling of methanol to olefins process on SAPO-34:A single particle model, Ind. Eng. Chem. Res. 52(2013) 3693-3707. [44] R. Aris, Theory of catalysis. (Book reviews:The mathematical theory of diffusion and reaction in permeable catalysts Vol. 1, The theory of the steady state xvi, Vol. 2, Questions of uniqueness, stability, and transient behaviour), Science, 190(1975) 667-668. [45] G.F. Froment, Modeling of catalyst deactivation, Appl. Catal. A Gen. 212(2001) 117-128. |