[1] P. Liu, G. Wei, H. He, X. Liang, H. Chen, Y. Xi, The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides:catalytic deactivation and regeneration, Appl. Surf. Sci. 464(2019) 287-293. [2] G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, X. Ye, D.Y.C. Leung, UV/H2O2:an efficient aqueous advanced oxidation process for VOCs removal, Chem. Eng. J. 324(2017) 44-50. [3] M. Luo, Y. Cheng, X. Peng, W. Pan, Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene, Chem. Eng. J. 369(2019) 758-765. [4] S. Meydan, M. Esrefoglu, S. Selek, E.A. Tosunoglu, O. Ozturk, N. Kurbetli, N. Bayındır, H. Bulut, I. Meral, Protective effects of caffeic acid phenethyl ester and thymoquinone on toluene induced liver toxicity, Biotech. Histochem. 94(2019) 1-6. [5] S. Liu, Y. Peng, T. Yan, Y. Zhang, John Crittenden, H. Li, Modified silica adsorbents for toluene adsorption under dry and humid conditions:impacts of pore size and surface chemistry, ACS Catal. 35(2019) 8927-8934. [6] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Photocatalytic degradation of VOCs on various commercial titanium dioxides:impact of operating parameters on removal efficiency and by-products generation, Build. Environ. 138(2018) 275-282. [7] F. Saleem, K. Zhang, A. Harvey, Removal of toluene as a tar analogue in a N2 carrier gas using a non-thermal plasma dielectric barrier discharge reactor, Energy & Fuel 33(2019) 389-396. [8] A. Behnami, K. Zoroufchi, B. Mohammad, S. Siavash, A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant, Stoch. Environ. Res. Risk Assess. 33(2019) 13-29. [9] N. Li, J. Cheng, X. Xing, P. Li, Z. Hao, Hydrotalcite-derived Pd/Co3MnxAl1-xO mixed oxides as efficient catalysts for complete oxidation of toluene, Catal. Today 327(2019) 382-388. [10] J. Wang, P. Wang, A. Yoshida, Q. Zhao, S. Li, X. Hao, A. Abudula, G. Xu, G. Guan, Mn-Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene, Carbon Resour. Convers. 3(2020) 36-45. [11] G. Li, C. Zhang, Z. Wang, H. Huang, H. Peng, X. Li, Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation, Appl. Catal. A Gen. 550(2018) 67-76. [12] L. Zhao, Z. Zhang, Y. Li, X. Leng, T. Zhang, F. Yuan, X. Niu, Y. Zhu, Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion, Appl. Catal. B Environ. 245(2019) 502-512. [13] Y. Liu, H. Zhou, R. Cao, X. Liu, P. Zhang, J. Zhan, L. Liu, Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures, Appl. Catal. B Environ. 245(2019) 569-582. [14] J. Zhou, M. Wu, Y. Zhang, C. Zhu, Y. Fang, Y. Li, L. Yu, 3D hierarchical structures MnO2/C:a highly efficient catalyst for purification of volatile organic compounds with visible light irradiation, Appl. Surf. Sci. 447(2018) 191-199. [15] R.K. Nath, R. Sultana, R. Khatun, R. Hossain, M.F.M. Zain, A comparative photocatalytic activity of LiNbO3 and TiO2 by investigating the removal efficiency of toluene from indoor air, Asian J. Chem. 30(2018) 845-852. [16] A. Rokicińska, M. Drozdek, B. Dudek, B. Gil, P. Michorczyk, D. Brouri, S. Dzwigaj, P. Kuśtrowski, Cobalt-containing BEA zeolite for catalytic combustion of toluene, Appl. Catal. B Environ. 212(2017) 59-67. [17] H. Xu, Z. Shen, G. Chen, C. Yin, Y. Liu, Z. Ge, Carbon-coated mesoporous silicasupported Ni nanocomposite catalyst for efficient hydrogen production via steam reforming of toluene, Fuel. 275(2020) 1-8. [18] J. He, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene, Appl. Catal. B Environ. 265(2020) 118560. [19] Q. Zhou, J. Huang, X. Zhang, Y. Gao, Assembling polypyrrole coated sepiolite fiber as efficient particle adsorbent for chromium (VI) removal with the feature of convenient recycling, Appl. Clay Sci. 166(2018) 307-317. [20] N. Dong, Ye J. Q, M. Zhang, S. Chen, T. King Cheng, H. Dai, Catalytic oxidation of HCHO over the sodium-treated sepiolite-supported rare earth (La, Eu, Dy, and Tm) oxide catalysts, Catalysts. 10(2020) 328-344. [21] X. Hu, C. Li, J. Song, S. Zheng, Z. Sun, Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light, J. Colloid Interface Sci. 574(2020) 61-73. [22] H. Htet, K. Wang, Y. Li, A. Kumar, G. Zhang, Sepiolite supported BiVO4 nanocomposites for efficient photocatalytic degradation of organic pollutants:insight into the interface effect towards separation of photogenerated charges, Sci. Total Environ. 722(2020) 137825. [23] G.S. Li, L.J. Cheng, B. Zhang, Y. Li, Novel Bi2O3 loaded sepiolite photocatalyst:preparation and characterization, Mater. Lett. 168(2016) 143-145. [24] C.H. Zhou, G.L. Li, X.Y. Zhuang, P.P. Wang, D.S. Tong, H.M. Yang, C.X. Lin, L. Li, H. Zhang, S.F. Ji, W.H. Yu, Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein, Mol. Catal. 434(2017) 219-231. [25] Z. Xiao, J. Yang, R. Ren, J. Li, N. Wang, W. Chu, Chemosphere facile synthesis of homogeneous hollow microsphere Cu-Mn based catalysts for catalytic oxidation of toluene, Chemosphere. 247(2020) 125812. [26] D. Yan, S. Mo, Y. Sun, Q. Ren, Z. Feng, P. Chen, J. Wu, M. Fu, D. Ye, Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion, Chemosphere. 247(2020) 125860. [27] C. Dong, Z. Qu, Y. Qin, Q. Fu, H. Sun, X. Duan, Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation:involvement and replenishment of oxygen species using in situ designed-TP techniques, ACS Catal. 9(2019) 6698-6710. [28] Z. Hou, J. Feng, T. Lin, H. Zhang, X. Zhou, Y. Chen, The performance of manganesebased catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene, Appl. Surf. Sci. 434(2018) 82-90. [29] J. Chen, X. Chen, W. Xu, Z. Xu, J. Chen, H. Jia, J. Chen, Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene, Chem. Eng. J. 330(2017) 281-293. [30] H. Zhang, Z. Hou, Y. Zhu, J. Wang, Y. Chen, Sulfur deactivation mechanism of Pt/MnOx-CeO2 for soot oxidation:surface property study, Appl. Surf. Sci. 396(2017) 560-565. [31] B. Liu, C. Li, G. Zhang, X. Yao, Z. Li, Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods, ACS Catal. 8(2018) 10446-10456. [32] Y. Wang, R. Xue, C. Zhao, F. Liu, C. Liu, F. Han, Effects of Ce in the catalytic combustion of toluene on CuxCe1-xFe2O4, Colloids Surfaces A Physicochem. Eng. Asp. 540(2018) 90-97. [33] Z. Qu, K. Gao, Q. Fu, Y. Qin, Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method, Catal. Commun. 52(2014) 31-35. [34] V.V. Gudkov, M.N. Sarychev, S. Zherlitsyn, I.V. Zhevstovskikh, N.S. Averkiev, Sub-lattice of Jahn-Teller centers in hexaferrite crystal, Sci. Rep. 10(2020) 7076. [35] Q. Ren, R. Peng, Z. Feng, M. Zhang, L. Chen, M. Fu, J. Wu, D. Ye, Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for toluene catalytic oxidation, J. Mater. Chem. A 6(2018) 498-509. [36] S. Mo, S. Li, M. Zhang, Y. Sun, B. Wang, Z. Feng, Q. Zhang, Y. Chen, D. Ye, Verticallyaligned Co3O4 arrays on Ni foam as monolithic structured catalysts for CO oxidation:effects of morphological transformation, Nanoscale 10(2018) 7746-7758. [37] X. Wang, Y. Liu, T. Zhang, Y. Luo, Geometrical-site-dependent catalytic activity of ordered mesoporous co-based spinel for benzene oxidation:in situ DRITFS study coupled with Raman and XAFS spectroscopy, ACS Catal. 7(2017) 1626-1636. [38] S. Mo, Q. Zhang, Y. Sun, M. Zhang, J. Li, Q. Ren, M. Fu, J. Wu, L. Chen, D. Ye, Gaseous CO and toluene co-oxidation over monolithic core-shell Co3O4-based hetero-structured catalysts, J. Mater. Chem. A 7(2019) 16197-16210. [39] C. Zhang, W. Chu, F. Chen, L. Li, R. Jiang, J. Yan, Effects of cerium precursors on surface properties of mesoporous CeMnOx catalysts for toluene combustion, J. Rare Earths 38(2020) 70-75. [40] Z. Wang, B. Chen, M. Crocker, L. Yu, C. Shi, General new insights into alkaline metal modified CoMn-oxide catalysts for formaldehyde oxidation at low temperatures, Appl. Catal. A Gen. 596(2020) 117512. [41] W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu, Y. Chen, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation:effect of calcination temperature and preparation method, J. Mater. Chem. A 2(2014) 2544-2554. [42] Q. Zhu, Z. Jiang, M. Ma, C. He, Y. Yu, X. Liu, R.K. Albilali, Revealing the unexpected promotion effect of diverse potassium-precursors on α-MnO2 for toluene catalytic destruction, Catal. Sci. Technol. 10(2020) 2100-2110. [43] H. Sun, Z. Liu, S. Chen, X. Quan, The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene, Chem. Eng. J. 270(2015) 58-65. [44] Y. Zheng, S. Thampy, N. Ashburn, S. Dillon, L. Wang, Y. Jangjou, K. Tan, F. Kong, Y. Nie, M.J. Kim, W.S. Epling, Y.J. Chabal, J.W.P. Hsu, K. Cho, Stable and active oxidation catalysis by cooperative lattice oxygen redox on SmMn2O5 mullite surface, J. Am. Chem. Soc. 141(2019) 10722-10728. [45] Y. Li, L. Xiao, F. Liu, Y. Dou, S. Liu, Y. Fan, G. Cheng, W. Song, J. Zhou, Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst, J. Nanopart. Res. 21(2019) 28.
|