[1] P. Tian, Y.X. Wei, M. Ye, Z.M. Liu, Methanol to olefins (MTO):From fundamentals to commercialization, ACS Catal. 5(3) (2015) 1922-1938. [2] L. Regli, S. Bordiga, A. Zecchina, M. Bjergen, K.P. Lillerud, Acidity properties of CHA-zeolites (SAPO-34 and SSZ-13):An FTIR spectroscopic study, Stud. Surf. Sci. Catal. 155(2005) 471-479. [3] J. Goetze, F. Meirer, I. Yarulina, J. Gascon, F. Kapteijn, J. Ruiz-Martínez, B.M. Weckhuysen, Insights into the activity and deactivation of the methanol-toolefins process over different small-pore zeolites as studied with operando UVvis spectroscopy, ACS Catal. 7(6) (2017) 4033-4046. [4] G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou, Z. Liu, Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template, Microporous Mesoporous Mater. 111(1-3) (2008) 143-149. [5] Y. Watanabe, A. Koiwai, H. Takeuchi, S.A. Hyodo, S. Noda, Multinuclear NMR studies on the thermal stability of SAPO-34, J. Catal. 143(2) (1993) 430-436. [6] S.S. Gao, S.T. Xu, Y.X. Wei, Q.L. Qiao, Z.C. Xu, X.Q. Wu, M.Z. Zhang, Y.L. He, S.L. Xu, Z.M. Liu, Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34:Coke, diffusion, and acidic site accessibility, J. Catal. 367(2018) 306-314. [7] D. Chen, K. Moljord, A. Holmen, A methanol to olefins review:Diffusion, coke formation and deactivation on SAPO type catalysts, Microporous Mesoporous Mater. 164(2012) 239-250. [8] D. Chen, H.P. Rebo, K. Moljord, A. Holmen, The role of coke deposition in the conversion of methanol to olefins over SAPO-34, Stud. Surf. Sci. Catal. 111(1997) 159-166. [9] G.F. Froment, Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation, Catal. Rev. 50(1) (2008) 1-18. [10] M.S. Ahmad, C.K. Cheng, P. Bhuyar, A.E. Atabani, A. Pugazhendhi, N.T.L. Chi, T. Witoon, J.W. Lim, J.C. Juan, Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process-A review, Fuel 283(2021) 118851. [11] A.T. Aguayo, A.G. Gayubo, A. Atutxa, M. Olazar, J. Bilbao, Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins, J. Chem. Technol. Biotechnol. 74(11) (1999) 1082-1088. [12] D.L.S. Nieskens, J.D. Lunn, A. Malek, Understanding the enhanced lifetime of SAPO-34 in a direct syngas-to-hydrocarbons process, ACS Catal. 9(1) (2019) 691-700. [13] G.J. Hutchings, P. Johnston, Methanol conversion to hydrocarbons:Investigation of the possible role of carbon monoxide in the formation of the initial carbon-carbon bond, Appl. Catal. 67(1) (1990) L5-L9. [14] I.M. Dahl, S. Kolboe, On the reaction mechanism for propene formation in the MTO reaction over SAPO-34, Catal. Lett. 20(3-4) (1993) 329-336. [15] I.M. Dahl, S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2. isotopic labeling studies of the Co-reaction of propene and methanol, J. Catal. 161(1) (1996) 304-309. [16] W. Song, J.F. Haw, J.B. Nicholas, C.S. Heneghan, Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34, J. Am. Chem. Soc. 122(43) (2000) 10726-10727. [17] S. Ilias, A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal. 3(1) (2013) 18-31. [18] I.M. Dahl, S. Kolboe, On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-341. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol, J. Catal. 149(1994) 458-464. [19] Y.M. Zhang, L. Huang, X.C. Zhang, G.G. Sun, S.Q. Gao, S. Zhang, Upgrading of Canadian oil sand bitumen via cracking and coke gasification:effect of catalyst and operating parameters, Energy Fuels 31(7) (2017) 7438-7444. [20] F. Bauer, W.H. Chen, Q.i. Zhao, A. Freyer, S.B. Liu, Improvement of coke-induced selectivation of H-ZSM-5 during xylene isomerization, Microporous Mesoporous Mater. 47(1) (2001) 67-77. [21] J.B. Zhou, J.P. Zhao, J.L. Zhang, T. Zhang, M. Ye, Z.M. Liu, Regeneration of catalysts deactivated by coke deposition:A review, Chin. J. Catal. 41(7) (2020) 1048-1061. [22] J.-O. Barth, A. Jentys, J.A. Lercher, Elementary reactions and intermediate species formed during the oxidative regeneration of spent fluid catalytic cracking catalysts, Ind. Eng. Chem. Res. 43(12) (2004) 3097-3104. [23] C. Kern, A. Jess, Regeneration of coked catalysts-modelling and verification of coke burn-off in single particles and fixed bed reactors, Chem. Eng. Sci. 60(15) (2005) 4249-4264. [24] J. Zhou, J. Zhang, Y. Zhi, J. Zhao, T. Zhang, M. Ye, Z. Liu, Partial regeneration of the spent SAPO-34 catalyst in the methanol-to-olefins process via steam gasification, Ind. Eng. Chem. Res. 57(51) (2018) 17338-17347. [25] J. Zhou, M. Gao, J. Zhang, W. Liu, T. Zhang, H. Li, Z. Xu, M. Ye, Z. Liu, Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity, Nat. Commun. 12(1) (2021) 17. [26] J.P. Zhao, J.B. Zhou, M. Ye, Z.M. Liu, Kinetic study on air regeneration of industrial methanol-to-olefin catalyst, Ind. Eng. Chem. Res. 59(26) (2020) 11953-11961. [27] V.D. Dimitriadis, A.A. Lappas, I.A. Vasalos, Kinetics of combustion of carbon in carbonaceous deposits on zeolite catalysts for fluid catalytic cracking units (FCCU). Comparison between Pt and non Pt-containing catalysts, Fuel 77(12) (1998) 1377-1383. [28] P. Magnoux, P. Roger, C. Canaff, V. Fouche, N.S. Gnep, M. Guisnet, New technique for the characterization of carbonaceous compounds responsible for zeolite deactivation, Stud. Surf. Sci. Catal. 34(1987) 317-330. [29] S.T. Yang, J.Y. Kim, H.J. Chae, M. Kim, S.Y. Jeong, W.S. Ahn, Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure, Mater. Res. Bull. 47(11) (2012) 3888-3892. [30] Q.J. Zhu, J.N. Kondo, T. Tatsumi, S. Inagaki, R. Ohnuma, Y. Kubota, Y. Shimodaira, H. Kobayashi, K. Domen, A comparative study of methanol to olefin over CHA and MTF zeolites, J. Phys. Chem. C. 111(14) (2007) 5409-5415. [31] Z.B. Li, J. Martínez-Triguero, J.H. Yu, A. Corma, Conversion of methanol to olefins:Stabilization of nanosized SAPO-34 by hydrothermal treatment, J. Catal. 329(2015) 379-388. |