Chinese Journal of Chemical Engineering ›› 2021, Vol. 37 ›› Issue (9): 1-11.DOI: 10.1016/j.cjche.2021.04.009
• Reviews • Next Articles
Jiale Mao1, Jiazhi Miao2, Yingying Lu1, Zheming Tong2
Received:
2021-02-24
Revised:
2021-04-19
Online:
2021-11-02
Published:
2021-09-28
Contact:
Yingying Lu, Zheming Tong
Supported by:
Jiale Mao1, Jiazhi Miao2, Yingying Lu1, Zheming Tong2
通讯作者:
Yingying Lu, Zheming Tong
基金资助:
Jiale Mao, Jiazhi Miao, Yingying Lu, Zheming Tong. Machine learning of materials design and state prediction for lithium ion batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 1-11.
Jiale Mao, Jiazhi Miao, Yingying Lu, Zheming Tong. Machine learning of materials design and state prediction for lithium ion batteries[J]. 中国化学工程学报, 2021, 37(9): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.009
[1] P.Z. Lyu, X.J. Liu, J. Qu, J.T. Zhao, Y.T. Huo, Z.G. Qu, Z.H. Rao, Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater. 31(2020) 195-220. [2] J.B. Dunn, L. Gaines, J.C. Kelly, C. James, K.G. Gallagher, The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction, Energy Environ. Sci. 8(1) (2015) 158-168. [3] M.S. Whittingham, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev. 114(23) (2014) 11414-11443. [4] M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries, Adv. Mater. 30(33) (2018) e1800561. [5] Y. Liu, T.L. Zhao, W.W. Ju, S.Q. Shi, Materials discovery and design using machine learning, J. Materiomics 3(3) (2017) 159-177. [6] D.C. Elton, Z. Boukouvalas, M.S. Butrico, M.D. Fuge, P.W. Chung, Applying machine learning techniques to predict the properties of energetic materials, Sci. Rep. 8(1) (2018) 9059. [7] Y. Liu, B.R. Guo, X.X. Zou, Y.J. Li, S.Q. Shi, Machine learning assisted materials design and discovery for rechargeable batteries, Energy Storage Mater. 31(2020) 434-450. [8] B. Xia, X. Zhao, R. de Callafon, H. Garnier, T. Nguyen, C. Mi, Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods, Appl. Energy 179(2016) 426-436. [9] E. Namor, D. Torregrossa, R. Cherkaoui, M. Paolone, Parameter identification of a lithium-ion cell single-particle model through non-invasive testing, J. Energy Storage 12(2017) 138-148. [10] M.F. Ng, J. Zhao, Q.Y. Yan, G.J. Conduit, Z.W. Seh, Predicting the state of charge and health of batteries using data-driven machine learning, Nat. Mach. Intell. 2(3) (2020) 161-170. [11] M. Littmann, K. Selig, L. Cohen-Lavi, Y. Frank, P. Hönigschmid, E. Kataka, A. Mösch, K. Qian, A. Ron, S. Schmid, A. Sorbie, L. Szlak, A. Dagan-Wiener, N. Ben-Tal, M.Y. Niv, D. Razansky, B.W. Schuller, D. Ankerst, T. Hertz, B. Rost, Validity of machine learning in biology and medicine increased through collaborations across fields of expertise, Nat. Mach. Intell. 2(1) (2020) 18-24. [12] T. Radivojević, Z. Costello, K. Workman, H. Garcia Martin, A machine learning automated recommendation tool for synthetic biology, Nat. Commun. 11(1) (2020) 1-14. [13] J. Goecks, V. Jalili, L.M. Heiser, J.W. Gray, How machine learning will transform biomedicine, Cell 181(1) (2020) 92-101. [14] C. Crisci, B. Ghattas, G. Perera, A review of supervised machine learning algorithms and their applications to ecological data, Ecol. Model. 240(2012) 113-122. [15] A.H. Ran, Z.H. Zhou, S.X. Chen, P.B. Nie, K. Qian, Z.L. Li, B.H. Li, H.B. Sun, F.Y. Kang, X. Zhang, G.D. Wei, Data-driven fast clustering of second-life lithium-ion battery:Mechanism and algorithm, Adv. Theory Simul. 3(8) (2020) 2000109. [16] H.S. Wang, Y.J. Ji, Y.Y. Li, Simulation and design of energy materials accelerated by machine learning, Wires Comput. Mol. Sci. 10(1) (2020) e1421. [17] M. Wang, T. Wang, P.Q. Cai, X.D. Chen, Nanomaterials discovery and design through machine learning, Small Methods 3(5) (2019) 1900025. [18] S.Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W.W. Ju, C.Y. Ouyang, R.J. Xiao, Multi-scale computation methods:Their applications in lithium-ion battery research and development, Chinese Phys. B 25(1) (2016) 018212. [19] Y. Liu, J.M. Wu, M. Avdeev, S.Q. Shi, Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties, Adv. Theory Simul. 3(2) (2020) 1900215. [20] F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4(3) (2019) 187-196. [21] H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu, C. Yan, G.-L. Zhu, R. Xu, C.-Z. Zhao, L.-P. Hou, C. He, S. Kaskel, Q. Zhang, Controlling dendrite growth in solid-state electrolytes, ACS Energy Lett. 5(3) (2020) 833-843. [22] S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy 5(3) (2020) 259-270. [23] B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B 89(9) (2014) 094104. [24] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y.F. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors, Nat. Mater. 14(10) (2015) 1026-1031. [25] Y. Zhang, X.F. He, Z.Q. Chen, Q. Bai, A.M. Nolan, C.A. Roberts, D. Banerjee, T. Matsunaga, Y.F. Mo, C. Ling, Unsupervised discovery of solid-state lithium ion conductors, Nat. Commun. 10(1) (2019) 5260. [26] A.D. Sendek, E.D. Cubuk, E.R. Antoniuk, G. Cheon, Y. Cui, E.J. Reed, Machine learning-assisted discovery of solid Li-ion conducting materials, Chem. Mater. 31(2) (2019) 342-352. [27] D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12(3) (2017) 194-206. [28] P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy 3(1) (2018) 16-21. [29] C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems:A propagation model for liquid electrolytes under galvanostatic conditions, J. Electrochem. Soc. 150(10) (2003) A1377-A1384. [30] Z. Ahmad, T. Xie, C. Maheshwari, J.C. Grossman, V. Viswanathan, Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes, ACS Cent. Sci. 4(8) (2018) 996-1006. [31] B. Liu, J. Yang, H. Yang, C. Ye, Y. Mao, J. Wang, S. Shi, J. Yang, W. Zhang, Rationalizing the interphase stability of Li|doped-Li7La3Zr2O12 via automated reaction screening and machine learning, J. Mater. Chem. A 7(34) (2019) 19961-19969. [32] W.W. Yan, S.Y. Yang, Y.Y. Huang, Y. Yang, G.H. Yuan, A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries, J. Alloy. Compd. 819(2020) 153048. [33] C.H. Wang, K. Aoyagi, P. Wisesa, T. Mueller, Lithium ion conduction in cathode coating materials from on-the-fly machine learning, Chem. Mater. 32(9) (2020) 3741-3752. [34] Y.H. Xiao, L.J. Miara, Y. Wang, G. Ceder, Computational screening of cathode coatings for solid-state batteries, Joule 3(5) (2019) 1252-1275. [35] G. Pilania, C.C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Accelerating materials property predictions using machine learning, Sci. Rep. 3(2013) 2810. [36] K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C.A.J. Fisher, H. Moriwake, I. Tanaka, Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms, Adv. Energy Mater. 3(8) (2013) 980-985. [37] R. Jalem, M. Nakayama, T. Kasuga, An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks, J. Mater. Chem. A 2(3) (2014) 720-734. [38] R.P. Joshi, J. Eickholt, L.L. Li, M. Fornari, V. Barone, J.E. Peralta, Machine learning the voltage of electrode materials in metal-ion batteries, ACS Appl. Mater. Interfaces 11(20) (2019) 18494-18503. [39] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Representation of compounds for machine-learning prediction of physical properties, Phys. Rev. B 95(14) (2017) 144110. [40] A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Machine learning with systematic density-functional theory calculations:Application to melting temperatures of single- and binary-component solids, Phys. Rev. B-Condens. Matter Mater. Phys. [41] A. Ishikawa, K. Sodeyama, Y. Igarashi, T. Nakayama, Y. Tateyama, M. Okada, Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents, Phys. Chem. Chem. Phys. 21(48) (2019) 26399-26405. [42] M. Sumita, Y. Tanaka, T. Ohno, Possible polymerization of PS4 at a Li3PS4/FePO4 interface with reduction of the FePO4 phase, J. Phys. Chem. C 121(18) (2017) 9698-9704. [43] M. Sumita, R. Tamura, K. Homma, C. Kaneta, K. Tsuda, Li-ion conductive Li3PO4-Li3BO3-Li2SO4 mixture:Prevision through densityfunctional molecular dynamics and machine learning, Bull Chem. Soc. Jpn. 92(6) (2019) 1100-1106. [44] J.F. Whitacre, J. Mitchell, A. Dave, W. Wu, V. Viswanathan, An autonomous electrochemical test stand for machine learning informed electrolyte optimization, J. Electrochem. Soc. 166(16) (2019) A4181-A4187. [45] A. Dave, J. Mitchell, K. Kandasamy, H. Wang, S. Burke, B. Paria, B. Póczos, J. Whitacre, V. Viswanathan, Autonomous discovery of battery electrolytes with robotic experimentation and machine learning, Cell Rep. Phys. Sci. 1(12) (2020) 1002641. [46] M.M. van Duongvan Tran, A. Garg, H. van Nguyen, T.T.K.M.L. Huynh, Phung le, Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell, Int. J. Energy Res. 45(3) (2021) 4133-4144. [47] A.D. Robertson, A.R. West, A.G. Ritchie, Review of crystalline lithium-ion conductors suitable for high temperature battery applications, Solid State Ionics 104(1-2) (1997) 1-11. [48] B.K. Wheatle, E.F. Fuentes, N.A. Lynd, V. Ganesan, Design of polymer blend electrolytes through a machine learning approach, Macromolecules 53(21) (2020) 9449-9459. [49] K. Hatakeyama-Sato, T. Tezuka, M. Umeki, K. Oyaizu, AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures, J. Am. Chem. Soc. 142(7) (2020) 3301-3305. [50] Y.M. Wang, T. Xie, A. France-Lanord, A. Berkley, J.A. Johnson, Y. Shao-Horn, J.C. Grossman, Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics, Chem. Mater. 32(10) (2020) 4144-4151. [51] Y. Takagishi, T. Yamanaka, T. Yamaue, Machine learning approaches for designing mesoscale structure of Li-ion battery electrodes, Batteries 5(3) (2019) 54. [52] M. Attarian Shandiz, R. Gauvin, Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries, Comput. Mater. Sci. 117(2016) 270-278. [53] A.P. Wang, Z.Y. Zou, D. Wang, Y. Liu, Y.J. Li, J.M. Wu, M. Avdeev, S.Q. Shi, Identifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning, Energy Storage Mater. 35(2021) 595-601. [54] Y. Xing, E.W.M. Ma, K.L. Tsui, M. Pecht, Battery management systems in electric and hybrid vehicles, Energies 4(11) (2011) 1840-1857. [55] B. Gou, Y. Xu, X. Feng, State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method, IEEE Trans. Veh. Technol. 69(10) (2020) 10854-10867. [56] J. Rivera-Barrera, N. Muñoz-Galeano, H. Sarmiento-Maldonado, SoC estimation for lithium-ion batteries:Review and future challenges, Electronics 6(4) (2017) 102. [57] H.W. He, X.W. Zhang, R. Xiong, Y.L. Xu, H.Q. Guo, Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles, Energy 39(1) (2012) 310-318. [58] S. Lee, J. Kim, J. Lee, B.H. Cho, State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge, J. Power Sources 185(2) (2008) 1367-1373. [59] S. Santhanagopalan, Q.Z. Guo, P. Ramadass, R.E. White, Review of models for predicting the cycling performance of lithium ion batteries, J. Power Sources 156(2) (2006) 620-628. [60] H.W. He, R. Xiong, X.W. Zhang, F.C. Sun, J.X. Fan, State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model, IEEE Trans. Veh. Technol. 60(4) (2011) 1461-1469. [61] Q. Miao, L. Xie, H.J. Cui, W. Liang, M. Pecht, Remaining useful life prediction of lithium-ion battery with unscented particle filter technique, Microelectron. Reliab. 53(6) (2013) 805-810. [62] J.C. Álvarez Antón, P.J. García Nieto, C. Blanco Viejo, J.A. Vilán Vilán, Support vector machines used to estimate the battery state of charge, IEEE Trans. Power Electron. 28(12) (2013) 5919-5926.. [63] S.J. Tong, J.H. Lacap, J.W. Park, Battery state of charge estimation using a load-classifying neural network, J. Energy Storage 7(2016) 236-243. [64] W. He, N. Williard, C.C. Chen, M. Pecht, State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation, Int. J. Electr. Power Energy Syst. 62(2014) 783-791. [65] X.B. Song, F.F. Yang, D. Wang, K.L. Tsui, Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries, IEEE Access 7(2019) 88894-88902. [66] M.A. Hannan, M.S.H. Lipu, A. Hussain, P.J. Ker, T.M.I. Mahlia, M. Mansor, A. Ayob, M.H. Saad, Z.Y. Dong, Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques, Sci. Rep. 10(1) (2020) 4687. [67] M. Landi, G. Gross, Measurement techniques for online battery state of health estimation in vehicle-to-grid applications, IEEE Trans. Instrum. Meas. 63(5) (2014) 1224-1234. [68] H.H. Pan, Z. Lü, H.M. Wang, H.Y. Wei, L. Chen, Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine, Energy 160(2018) 466-477. [69] P. Khumprom, N. Yodo, A data-driven predictive prognostic model for lithium-ion batteries based on a \r deep learning algorithm, Energies 12(4) (2019) 660. [70] Y.Y. Li, S.M. Zhong, Q.S. Zhong, K.B. Shi, Lithium-ion battery state of health monitoring based on ensemble learning, IEEE Access 7(2019) 8754-8762. [71] H.C. Dong, X.N. Jin, Y.B. Lou, C.H. Wang, Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter, J. Power Sources 271(2014) 114-123. [72] P.-H. Michel, V. Heiries, (VTC Spring) (2015). [73] Y.Z. Zhang, R. Xiong, H.W. He, M.G. Pecht, Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries, IEEE Trans. Veh. Technol. 67(7) (2018) 5695-5705. [74] C. Hu, G. Jain, C. Schmidt, C. Strief, M. Sullivan, Online estimation of lithium-ion battery capacity using sparse Bayesian learning, J. Power Sources 289(2015) 105-113. [75] M.A. Patil, P. Tagade, K.S. Hariharan, S.M. Kolake, T. Song, T. Yeo, S. Doo, A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation, Appl. Energy 159(2015) 285-297. [76] Z. Zheng, J. Peng, K. Deng, K. Gao, H. Li, B. Chen, Y. Yang, Z. Huang, A novel method for lithium-ion battery remaining useful life prediction using time window and gradient boosting decision trees, In:201910th International Conference on Power Electronics and ECCE Asia, 2019.. [77] K.A. Severson, P.M. Attia, N. Jin, N. Perkins, B.B. Jiang, Z. Yang, M.H. Chen, M. Aykol, P.K. Herring, D. Fraggedakis, M.Z. Bazant, S.J. Harris, W.C. Chueh, R.D. Braatz, Data-driven prediction of battery cycle life before capacity degradation, Nat. Energy 4(5) (2019) 383-391. [78] Y.W. Zhang, Q.C. Tang, Y. Zhang, J.B. Wang, U. Stimming, A.A. Lee, Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning, Nat Commun 11(1) (2020) 1706. [79] M. Berecibar, F. Devriendt, M. Dubarry, I. Villarreal, N. Omar, W. Verbeke, J. van Mierlo, Online state of health estimation on NMC cells based on predictive analytics, J. Power Sources 320(2016) 239-250. [80] M. Liu, C. Clement, K. Liu, X.M. Wang, T.D. Sparks, A data science approach for advanced solid polymer electrolyte design, Comput. Mater. Sci. 187(2021) 110108. [81] M. Aykol, P. Herring, A. Anapolsky, Machine learning for continuous innovation in battery technologies, Nat. Rev. Mater. 5(10) (2020) 725-727. [82] S.M. Faradonbe, F. Safi-Esfahani, A classifier task based on Neural Turing Machine and particle swarm algorithm, Neurocomputing 396(2020) 133-152. [83] H.L. Zhang, W. Tang, W. Na, P.Y. Lee, J. Kim, Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction, J. Energy Storage 31(2020) 101489. [84] C. Chen, Y.X. Zuo, W.K. Ye, X.G. Li, Z. Deng, S.P. Ong, A critical review of machine learning of energy materials, Adv. Energy Mater. 10(8) (2020) 1903242. |
[1] | Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. The feasibility for natural graphite to replace artificial graphite in organic electrolyte with different film-forming additives [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 58-69. |
[2] | Denglong Ma, Ruitao Wu, Zekang Li, Kang Cen, Jianmin Gao, Zaoxiao Zhang. A new method to forecast multi-time scale load of natural gas based on augmentation data-machine learning model [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 166-175. |
[3] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[4] | Tong Qin, Zhenhao Xi, Ling Zhao, Weikang Yuan. Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 231-242. |
[5] | Jun Zhang, Qin Wang, Weifeng Shen. Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 115-125. |
[6] | Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 227-239. |
[7] | Jie Yang, Alejandro Gallegos, Cheng Lian, Shengwei Deng, Honglai Liu, Jianzhong Wu. Curvature effects on electric-double-layer capacitance [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 145-152. |
[8] | Huan Zhang, Peisong Yang, Duli Yu, Kunfeng Wang, Qingyuan Yang. Prediction of methane storage in covalent organic frameworks using big-data-mining approach [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 286-296. |
[9] | Weijun Zhu, Xingwang Liu, Xu Hou, Jiayao Hu, Zhenheng Diao. Application of machine learning to process simulation of n-pentane cracking to produce ethylene and propene [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1832-1839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||