Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 162-169.DOI: 10.1016/j.cjche.2021.10.018
• Review • Previous Articles Next Articles
Yuyang Kang1, Yiqing Luo1, Xigang Yuan1,2
Received:
2021-07-12
Revised:
2021-10-26
Online:
2022-02-25
Published:
2022-01-28
Contact:
Yiqing Luo,E-mail address:luoyq@tju.edu.cn;Xigang Yuan,E-mail address:yuanxg@tju.edu.cn
Supported by:
Yuyang Kang1, Yiqing Luo1, Xigang Yuan1,2
通讯作者:
Yiqing Luo,E-mail address:luoyq@tju.edu.cn;Xigang Yuan,E-mail address:yuanxg@tju.edu.cn
基金资助:
Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169.
Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes[J]. 中国化学工程学报, 2022, 41(1): 162-169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.10.018
[1] Q. Chen, I.E. Grossmann, Recent developments and challenges in optimizationbased process synthesis, Annu. Rev. Chem. Biomol. Eng. 8(2017) 249–283. [2] A. Mitsos, N. Asprion, C.A. Floudas, M. Bortz, M. Baldea, D. Bonvin, A. Caspari, P. Schäfer, Challenges in process optimization for new feedstocks and energy sources, Comput. Chem. Eng. 113(2018) 209–221. [3] J. Sansana, M.N. Joswiak, I. Castillo, Z.Y. Wang, R. Rendall, L.H. Chiang, M.S. Reis, Recent trends on hybrid modeling for Industry 4.0, Comput. Chem. Eng. 151(2021) 107365. [4] L.T. Biegler, I.E. Grossmann, Retrospective on optimization, Comput. Chem. Eng. 28(8) (2004) 1169–1192. [5] L.T. Biegler, Nonlinear Programming:Concepts, Algorithms, and Applications to Chemical Processes, Society for Industrial and Applied Mathematics, PA Philadelphia, 2010. [6] J. Javaloyes-Antón, R. Ruiz-Femenia, J.A. Caballero, Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm, Ind. Eng. Chem. Res. 52(44) (2013) 15621–15634. [7] H. Lyu, S.H. Li, C.T. Cui, X.G. Yu, J.S. Sun, Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene, Sep. Purif. Technol. 257(2021) 117907. [8] Y.M. Han, S. Liu, Z.Q. Geng, H.C. Gu, Y.X. Qu, Energy analysis and resources optimization of complex chemical processes: Evidence based on novel DEA cross-model, Energy 218(2021) 119508. [9] Z. Wang, Y.M. Han, C.F. Li, Z.Q. Geng, J.Z. Fan, Input-output networks considering graphlet-based analysis for production optimization: Application in ethylene plants, J. Clean. Prod. 278(2021) 123955. [10] N. Quirante, J. Javaloyes, J.A. Caballero, Rigorous design of distillation columns using surrogate models based on Kriging interpolation, AIChE J. 61(7) (2015) 2169–2187. [11] T. Keßler, C. Kunde, K. McBride, N. Mertens, D. Michaels, K. Sundmacher, A. Kienle, Global optimization of distillation columns using explicit and implicit surrogate models, Chem. Eng. Sci. 197(2019) 235–245. [12] I.E. Grossmann, L.T. Biegler, I.I. Part, Future Perspective on Optimization, Comput. Chem. Eng. 28(8) (2004) 1193–1218. [13] F.A.C. Viana, T.W. Simpson, V. Balabanov, V. Toropov, Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?, AIAA J 52(4) (2014) 670–690. [14] J.A. Caballero, D. Milán-Yañez, I.E. Grossmann, Rigorous design of distillation columns: integration of disjunctive programming and process simulators, Ind. Eng. Chem. Res. 44(17) (2005) 6760–6775. [15] R. Brunet, D. Cortés, G. Guillén-Gosálbez, L. Jiménez, D. Boer, Minimization of the LCA impact of thermodynamic cycles using a combined simulationoptimization approach, Appl. Therm. Eng. 48(2012) 367–377. [16] M.A. Navarro-Amorós, R. Ruiz-Femenia, J.A. Caballero, Integration of modular process simulators under the Generalized Disjunctive Programming framework for the structural flowsheet optimization, Comput. Chem. Eng. 67(2014) 13–25. [17] C.A. Muñoz López, D. Telen, P. Nimmegeers, L. Cabianca, F. Logist, J. van Impe, A process simulator interface for multiobjective optimization of chemical processes, Comput. Chem. Eng. 109(2018) 119–137. [18] A.W. Dowling, L.T. Biegler, A framework for efficient large scale equationoriented flowsheet optimization, Comput. Chem. Eng. 72(2015) 3–20. [19] Y.N. Ma, Z.J. Shao, X. Chen, L.T. Biegler, A parallel function evaluation approach for solution to large-scale equation-oriented models, Comput. Chem. Eng. 93(2016) 309–322. [20] Y.Z. Zhang, C.M. Masuku, L.T. Biegler, Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischertropsch processes, Energy Fuels 32(6) (2018) 7199–7209. [21] L.T. Biegler, I.E. Grossmann, A.W. Westerberg, Systematic Methods of Chemical Process Design, Upper Saddle River, Prentice Hall PTR, N.J, (1997). [22] C. Tsay, R.C. Pattison, M.R. Piana, M. Baldea, A survey of optimal process design capabilities and practices in the chemical and petrochemical industries, Comput. Chem. Eng. 112(2018) 180–189. [23] R.C. Pattison, M. Baldea, Equation-oriented flowsheet simulation and optimization using pseudo-transient models, AIChE J. 60(12) (2014) 4104–4123. [24] C.T. Kelley, D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal. 35(2) (1998) 508–523. [25] R.C. Pattison, C. Tsay, M. Baldea, Pseudo-transient models for multiscale, multiresolution simulation and optimization of intensified reaction/separation/recycle processes: Framework and a dimethyl ether production case study, Comput. Chem. Eng. 105(2017) 161–172. [26] C. Tsay, R.C. Pattison, M. Baldea, Equation-oriented simulation and optimization of process flowsheets incorporating detailed spiral-wound multistream heat exchanger models, AIChE J. 63(9) (2017) 3778–3789. [27] C. Tsay, R.C. Pattison, M. Baldea, A pseudo-transient optimization framework for periodic processes: Pressure swing adsorption and simulated moving bed chromatography, AIChE J. 64(8) (2018) 2982–2996. [28] Y.J. Ma, Y.Q. Luo, S. Zhang, X.G. Yuan, Simultaneous optimization of complex distillation systems and heat integration using pseudo-transient continuation models, Comput. Chem. Eng. 108(2018) 337–348. [29] F.G. Cui, C.T. Cui, J.S. Sun, Simultaneous optimization of heat-integrated extractive distillation with a recycle feed using pseudo transient continuation models, Ind. Eng. Chem. Res. 57(2018) 15423–15436, acs.iecr.8b02728. [30] T.S. Coffey, C.T. Kelley, D.E. Keyes, Pseudotransient continuation and differential-algebraic equations, SIAM J. Sci. Comput. 25(2) (2003) 553–569. [31] S. Widagdo, W.D. Seider, Journal review. Azeotropic distillation, AIChE J. 42(1) (1996) 96–130. [32] T.L. Wayburn, J.D. Seader, Homotopy continuation methods for computeraided process design, Comput. Chem. Eng. 11(1) (1987) 7–25. [33] I. Malinen, J. Tanskanen, Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies, Comput. Chem. Eng. 34(11) (2010) 1761–1774. [34] J. Asadi, F. Jalali Farahani, Optimization of dimethyl ether production process based on sustainability criteria using a homotopy continuation method, Comput. Chem. Eng. 115(2018) 161–178. [35] R.C. Pattison, A.M. Gupta, M. Baldea, Equation-oriented optimization of process flowsheets with dividing-wall columns, AIChE J. 62(3) (2016) 704–716. [36] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Equation-oriented optimization of reactive distillation systems using pseudo-transient models, Chem. Eng. Sci. 195(2019) 381–398. [37] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model, Ind. Eng. Chem. Res. 56(21) (2017) 6266–6274. [38] A. Rose, R.F. Sweeny, V.N. Schrodt, Continuous distillation calculations by relaxation method, Ind. Eng. Chem. 50(5) (1958) 737–740. [39] R.C. Pattison, M. Baldea, Multistream heat exchangers: Equation-oriented modeling and flowsheet optimization, AIChE J. 61(6) (2015) 1856–1866. [40] A. Kumar, T.F. Edgar, M. Baldea, Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field, Comput. Chem. Eng. 107(2017) 271–283. [41] A. Kumar, M. Baldea, T.F. Edgar, A physics-based model for industrial steammethane reformer optimization with non-uniform temperature field, Comput. Chem. Eng. 105(2017) 224–236. [42] C. Tsay, R.C. Pattison, Y. Zhang, G.T. Rochelle, M. Baldea, Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants, Appl. Energy 252(2019) 113379. [43] K. Seo, C. Tsay, B. Hong, T.F. Edgar, M.A. Stadtherr, M. Baldea, Rate-based process optimization and sensitivity analysis for ionic-liquid-based postcombustion carbon capture, ACS Sustainable Chem. Eng. 8(27) (2020) 10242–10258. [44] K. Seo, C. Tsay, T.F. Edgar, M.A. Stadtherr, M. Baldea, Economic optimization of carbon capture processes using ionic liquids: toward flexibility in capture rate and feed composition, ACS Sustainable Chem. Eng. 9(13) (2021) 4823–4839. [45] M. Zanfir, M. Baldea, P. Daoutidis, Optimizing the catalyst distribution for countercurrent methane steam reforming in plate reactors, AIChE J. 57(9) (2011) 2518–2528. [46] Y.J. Ma, Y.Q. Luo, X. Ma, T. Yang, D.L. Chen, X.G. Yuan, Fast algorithms for equation-oriented flowsheet simulation and optimization using pseudotransient models, Ind. Eng. Chem. Res. 57(42) (2018) 14124–14142. [47] Y.J. Ma, M. McLaughlan, N. Zhang, J. Li, Novel feasible path optimisation algorithms using steady-state and/or pseudo-transient simulations, Comput. Chem. Eng. 143(2020) 107058. [48] A.W. Dowling, L.T. Biegler, Rigorous optimization-based synthesis of distillation cascades without integer variables, in: Computer Aided Chemical Engineering, Elsevier, Amsterdam, 2014. 55–60. [49] X. Ma, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Equation-oriented optimization of methanol distillation systems using pseudo-transient models, Comput. Chem. Eng. 127(2019) 218–232. [50] Y. Feng, X. Li, Y. Luo, Equation-Oriented Optimization of a Distillation Column Considering Stage Hydraulics, Ind. Eng. Chem. Res. 59(30) (2020) 13657–13668. [51] H.Z. Hou, Y.Q. Luo, A novel method for generating distillation configurations, Front. Chem. Sci. Eng. 14(5) (2020) 834–846. [52] Y.J. Ma, Z.K. Yang, A. El-Khoruy, N. Zhang, J. Li, B.J. Zhang, L. Sun, Simultaneous synthesis and design of reaction–separation–recycle processes using rigorous models, Ind. Eng. Chem. Res. 60(19) (2021) 7275–7290. [53] C. Tsay, R.C. Pattison, M. Baldea, A dynamic optimization approach to probabilistic process design under uncertainty, Ind. Eng. Chem. Res. 56(30) (2017) 8606–8621. [54] C. Tsay, M. Baldea, Scenario-free optimal design under uncertainty of the PRICO natural gas liquefaction process, Ind. Eng. Chem. Res. 57(17) (2018) 5868–5880. [55] Y.J. Ma, N. Zhang, J. Li, C.W. Cao, Optimal design of extractive dividing-wall column using an efficient equation-oriented approach, Front. Chem. Sci. Eng. 15(1) (2021) 72–89. [56] C. Tsay, M. Baldea, Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds, Comput. Methods Appl. Mech. Eng. 348(2019) 935–953. |
[1] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[2] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[3] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[4] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[5] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[6] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[7] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[8] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[9] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[10] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[11] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[12] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[13] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[14] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 20-33. |
[15] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||