Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 145-161.DOI: 10.1016/j.cjche.2021.09.030
• Review • Previous Articles Next Articles
Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong
Received:
2021-05-24
Revised:
2021-07-27
Online:
2022-02-25
Published:
2022-01-28
Contact:
Baoning Zong,E-mail address:zongbn.ripp@sinopec.com
Supported by:
Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong
通讯作者:
Baoning Zong,E-mail address:zongbn.ripp@sinopec.com
基金资助:
Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong. Hydrogen peroxide and applications in green hydrocarbon nitridation and oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 145-161.
Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong. Hydrogen peroxide and applications in green hydrocarbon nitridation and oxidation[J]. 中国化学工程学报, 2022, 41(1): 145-161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.09.030
[1] R.V. Jagadeesh, H. Junge, M. Beller, Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts, Nat. Commun. 5(2014)4123. [2] Y. Wang, S. Furukawa, X. Fu, N. Yan, Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts, ACS Catal. 10(2020)311-335. [3] T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev. 36(2005)2329-2363. [4] J. Schranck, A. Tlili, M. Beller, More sustainable formation of C-N and C-C bonds for the synthesis of N-heterocycles, Angew. Chem. Int. Ed. 52(2013) 7642-7644. [5] R.A. Sheldon, R.S. Downing, Heterogeneous catalytic transformations for environmentally friendly production, Appl. Catal. A 189(1999)163-183. [6] L.A. Isupova, Y.A. Ivanova, Removal of nitrous oxide in nitric acid production, Kinet. Catal. 60(2019)744-760. [7] J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations, Science 360(2018)1-7. [8] J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Base-catalyzed hydroamination of olefins:an environmentally friendly route to amines, Adv. Synth. Catal. 344(2002)795-813. [9] Eco-profiles of plastics, PlasticsEurope.(2012-2019). https://www.plasticseurope.org/en/resources/eco-profiles. [10] P.T. Anastas, R.L. Lankey, Life cycle assessment and green chemistry:the yin and yang of industrial ecology, Green Chem. 2(2000)289-295. [11] R. Noyori, M. Aoki, K. Sato, Green oxidation with aqueous hydrogen peroxide, Chem. Commun. 16(2003)1977-1986. [12] L. Peng, C. Liu, N. Li, W. Zhong, L. Mao, S.R. Kirk, D. Yin, Direct cyclohexanone oxime synthesis via oxidation-oximization of cyclohexane with ammonium acetate, Chem. Commun. 56(2020)1436-1439. [13] X. Xiao, C. Guan, J. Xu, W. Fu, L. Yu, Selenium-catalyzed selective reactions of carbonyl derivatives:state-of-the-art and future challenges, Green Chem. 23(2021)4647-4655. [14] H. Cao, B. Zhu, Y. Yang, L. Xu, L. Yu, Q. Xu, Recent advances on controllable and selective catalytic oxidation of cyclohexene, Chin. J. Catal. 39(2018)899-907. [15] G. Gao, Y. Tian, X. Gong, Z. Pan, K. Yang, B. Zong, Advances in the production technology of hydrogen peroxide, Chin. J. Catal. 41(2020)1039-1047. [16] S. Wang, Y. Cheng, X. Zhang, B. Zong, Advances in hydrogenation catalyst for the production of hydrogen peroxide through the anthroquinone route, Chem. Ind. Eng. Prog. 36(2017)4057-4062. [17] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis:an outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45(2006)6962-6984. [18] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts, Angew. Chem. Int. Ed. 53(2014)13454-13459. [19] D. Yao, Current situation and outlook of hydrogen peroxide production in China, Inorg. Chem. Ind. 45(2013)1-4. [20] Z. Pan, B. Zong, G. Gao, K. Yang, H2O2 production technology with slurry reactor, Sci. Sin. Chim. 45(2015)541-546. [21] W. Wang, Z. Pan, W. Li, B. Zheng, B. Zong, Recent advances in development of the fluidized bed and fixed bed in the anthraquinone route, Chem. Ind. Eng. Prog. 35(2016)1766-1773. [22] H. Li, B. Zheng, Z. Pan, B. Zong, M. Qiao, Advances in the slurry reactor technology of the anthraquinone process for H2O2 production, Front. Chem. Sci. Eng. 12(2018)124-131. [23] X. Shi, E. Yuan, G. Liu, L. Wang, Effects of porous oxide layer on performance of Pd-based monolithic catalysts for 2-ethylanthraquinone hydrogenation, Chin. J. Chem. Eng. 24(2016)1570-1576. [24] L. Wang, Y. Zhang, Q. Ma, Z. Pan, B. Zong, Hydrogenation of alkyl-anthraquinone over hydrophobically functionalized Pd/SBA-15 catalysts, RSC Adv. 9(2019)34581-34588. [25] S. Zheng, Z. Pan, X. Meng, X. Mu, B. Zong, A palladium based hydrogenation catalyst and its application in the hydrogenation of anthraquinone, CN CN Pat., 104549246B, 2013. [26] S. Zheng, Z. Pan, X. Meng, X. Mu, B. Zong, A hydrogenation catalyst and its Applications, CN Pat., 104549236B, 2013. [27] B. Zheng, J. Fei, B. Zong, Z. Pan, Z. Zhu, J. Mao, X. Tang, L. Hu, Production method of 2-alkylanthracene, CN Pat., 2017, p. 109574779B. [28] Y. Zhang, G. Gao, K. Yang, B. Zong, G. Xu, Qualitative analysis of compositions of anthraquinone series working solution by gas chromatography-mass spectrometry, Chin. J. Chromatogr. 37(2019)432-437. [29] J. Zhou, Research progress of oxidation tail gas treatment in hydrogen peroxide production plant, Peroxide Branch of China Inorganic Salt Association, Luoyang, China, 2013. [30] G. Gao, K. Yang, H. Li, B. Zong, An oxidation method of anthraquinone for producing hydrogen peroxide, CN Pat., 105271131B (2014). [31] J. Sebastian, M. Zheng, Y. Jiang, Y. Zhao, H. Wang, Z. Song, One-spot conversion of lysine to caprolactam over Ir/H-Beta catalysts, Green Chem. 21(2019)2462-2468. [32] J. Qi, Comparison and analysis of technology scheme for cyclohexanone production, Coal Chem. Ind. 41(2018)140-143. [33] H. Li, S. Fu, The introduction of chemical treatment technology for waste salt solution of cyclohexane oxidation, Spec. Petrochem. 05(2000)5-8.(in Chinese) [34] A.R. Silva, T. Mourão, J. Rocha, Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands, Catal. Today 203(2013)81-86. [35] Y. She, J. Deng, L. Zhang, H. Shen, Catalytic oxidation of cyclohexane by O2 as an oxidant, Chem. Ind. Eng. Prog. 30(2018)124-136. [36] F. Steyer, K. Sundmacher, VLE and LLE data for the system cyclohexane+ cyclohexene+water+cyclohexanol, J. Chem. Eng. Data 49(2004)1675-1681. [37] Y. Xing, P. Zhao, Production process technical comparison of cyclohexanone, which is a raw material of caprolactam production, Chem. Eng. Equip. 03(2015)27-30.(in Chinese) [38] B. Saha, M.M. Sharma, Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors:ion-exchange resins as catalysts, React. Funct. Polym. 28(1996) 263-278. [39] B. Zong, D. Ma, L. Wen, B. Sun, K. Yang, Process and apparatus for co-producing cyclohexanol and alkanol, US9561991B2, 2012. [40] Y. Zhu, L. Gao, L. Wen, B. Zong, H. Wang, M. Qiao, Cyclohexene esterification-hydrogenation for efficient production of cyclohexanol, Green Chem. 23(2021)1185-1192. [41] T. Marco, P. Giovanni, N. Bruno, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US Pat., 4410501A (1979). [42] M. Lin, X. Shu, X. Wang, B. Zhu, Titanium-silicalite molecular sieve and the method for its preparation, US Pat., 6475465B2(1999). [43] B. Sun, Study on dissolution erosion of titanium silicalite zeolite in cyclohexanone ammoximation, Pet. Process. Petrochem. 36(2005)54-57. [44] B. Sun, W. Wu, E. Wang, Y. Li, S. Zhang, L. Hu, Process for regenerating titanium-containing catalysts, US Pat., 7384882B2,(2002). [45] W. Wu, B. Sun, Y. Li, S. Cheng, E. Wang, S. Zhang, Process for ammoximation of carbonyl compounds, US Pat., 7408080B2(2002). [46] B. Zong, B. Sun, S. Cheng, X. Mu, K. Yang, J. Zhao, X. Zhang, W. Wu, Green production technology of the monomer of nylon-6:caprolactam, Engineering 3(2017)379-384. [47] G. Bellussi, C. Perego, Industrial catalytic aspects of the synthesis of monomers for nylon production, CATTECH 4(2000)4-16. [48] B. Zong,"973" plans promoting the sustainable development of China petrochemical industry, Acta Pet. Sin Pet. Process. Sect. 31(2015)259-264. [49] J. Liu, L. Liu, S. Wang, Z. Li, Y. Zhang, X. Ding, D. Zhang, X. Zhao, Y. Wang, Research progress of ketoxime hydrolysis reaction and its hydroxylamine product separation, Chem. Ind. Eng. Prog. 39(2020)4147-4154. [50] Y. Xu, Q. Yang, Z. Li, L. Gao, D. Zhang, S. Wang, X. Zhao, Y. Wang, Ammoximation of cyclohexanone to cyclohexanone oxime using ammonium chloride as nitrogen source, Chem. Eng. Sci. 152(2016)717-723. [51] F. Zhao, K. You, C. Peng, S. Tan, R. Li, P. Liu, J. Wu, H. Luo, A simple and efficient approach for preparation of hydroxylamine sulfate from the acid-catalyzed hydrolysis reaction of cyclohexanone oxime, Chem. Eng. J. 272(2015)102-107. [52] C. Peng, Y. Wang, C. Deng, F. Zhao, K. You, Preparation of hydroxylamine sulfate by continuous reaction-extraction coupling technology, CIESC J. 70(2019)1842-1847.(in Chinese) [53] Y. Yang, C. Xia, M. Lin, B. Zhu, X. Peng, Y. Luo, X. Shu, Ammoximation reaction mechanism of benzaldehyde or cyclohexanone catalyzed by TS-1 zeolite, Acta Pet. Sin., Pet. Process. Sect. 36(2020)653-660. [54] A. Zecchina, S. Bordiga, C. Lamberti, G. Ricchiardi, C. Lamberti, G. Ricchiardi, D. Scarano, G. Petrini, G. Leofanti, M. Mantegazza, Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation, Catal. Today 32(1996)97-106. [55] M.A. Mantegazza, G. Leofanti, G. Petrini, M. Padovan, A. Zecchina, S. Bordiga, Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts, Stud. Surf. Sci. Catal. 82(1994)541-550. [56] M. Maria A, P. Mario, P. Guido, R. Paolo, Direct catalytic process for the production of hydroxylamine, US Pat., 5320819A (1991). [57] J. Fu, B. Xiao, J. Tu, Progress of the research for reactions between NOx and SO2, Chem. Ind. Eng. Prog. 18(1999)26-28.(in Chinese) [58] J.K. Niemeier, D.P. Kjell, Hydrazine and aqueous hydrazine solutions: evaluating safety in chemical processes, Org. Process Res. Dev. 17(2013) 1580-1590. [59] S.K. Singh, A.K. Singh, K. Aranishi, Q. Xu, Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(2011) 19638-19641. [60] Z. Zhou, S. Shi, Comparison on production technology of hydrazine hydrate by ketoneazide method and urea method, J. Salt Sci. Chem. Ind. 48(2019)5-8. [61] J. Ma, M. Liu, F. Lou, Research summary of catalysts for synthesizing ketazine by method of hydrogen peroxide, Chem. Propellants Polym. Mater. 7(2009) 26-28. [62] H. Hayashi, K. Kawasaki, T. Murata, NH4Cl-CuCl as a catalyst for the synthesis of ketazine directly from benzophenone, ammonia and oxygen, Chem. Lett. 3(1974)1079-1080. [63] S.B. Umbarkar, A.V. Biradar, S.M. Mathew, S.B. Shelke, K.M. Malshe, P.T. Patil, S.P. Dagde, S.P. Niphadkar, M.K. Dongare, Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst, Green Chem. 8(2006)488-493. [64] X. Ma, B. Li, M. Lu, C. Lv, Rare earth metal triflates catalyzed electrophilic nitration using N2O5, Chin. Chem. Lett. 23(2012)73-76. [65] E.A. Gelder, S.D. Jackson, C.M. Lok, The hydrogenation of nitrobenzene to aniline:a new mechanism, Chem. Commun. 28(4)(2005)522-524. [66] L. Wang, E. Guan, J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang, C. Cen, G. Fu, B.C. Gates, F.S. Xiao, Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation, Nat. Commun. 9(2018)1-8. [67] M. Wang, H. Li, Liquid-Phase hydrogenation of nitrobenzene to aniline over Ni-B/SiO2 amorphous catalyst, Chin. J. Catal. 22(2001)287-290. [68] B. Lu, X. Liu, Z. Yin, B. Huang, Recent development on doped porous carbon materials for catalytic reduction of nitrobenzene, Chem. Ind. Eng. Prog. 40(2021)778-788. [69] N.I. Kuznetsova, L.I. Kuznetsova, L.G. Detusheva, V.A. Likholobov, G.P. Pez, H. Cheng, Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts, J. Mol. Catal. A:Chem. 161(2000)1-9. [70] L.F. Zhu, B. Guo, D.Y. Tang, X.K. Hu, G.Y. Li, C.W. Hu, Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine, J. Catal. 245(2007)446-455. [71] N. Hoffmann, E. Löffler, N.A. Breuer, M. Muhler, On the nature of the active site for the oxidative amination of benzene to aniline over NiO/ZrO2 as cataloreactant, ChemSusChem 1(2008)393-396. [72] P. Desrosiers, S. Guan, A. Hagemeyer, D.M. Lowe, C. Lugmair, D.M. Poojary, H. Turner, H. Weinberg, X. Zhou, R. Armbrust, G. Fengler, U. Notheis, Application of combinatorial catalysis for the direct amination of benzene to aniline, Catal. Today 81(2003)319-328. [73] C. Hu, L. Zhu, Y. Xia, Direct amination of benzene to aniline by aqueous ammonia and hydrogen peroxide over V Ni/Al2O3 catalyst with catalytic distillation, Ind. Eng. Chem. Res. 46(2007)3443-3445. [74] B. Guo, Q. Zhang, G. Li, J. Yao, C. Hu, Aromatic C-N bond formation via simultaneous activation of C-H and N-H bonds:direct oxyamination of benzene to aniline, Green Chem. 14(2012)1880-1883. [75] T. Yu, Q. Zhang, S. Xia, G. Li, C. Hu, Direct amination of benzene to aniline by reactive distillation method over copper doped hierarchical TS-1 catalyst, Catal. Sci. Technol. 4(2014)639-647. [76] M. Nan, Y. Luo, G. Li, C. Hu, Improvement of the selectivity to aniline in benzene amination over Cu/TS-1 by potassium, RSC Adv. 7(2017)21974-21981. [77] H. Yuzawa, H. Yoshida, Direct aromatic-ring amination by aqueous ammonia with a platinum loaded titanium oxide photocatalyst, Chem. Commun. 46(2010)8854-8856. [78] T.A. Nijhuis, B.J. Huizinga, M. Makkee, J.A. Moulijn, Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports, Ind. Eng. Chem. Res. 38(1999)884-891. [79] B. Qian, Progress in production technology of propylene oxide, Chem. Propellants Polym. Mater. 4(2006)14-18. [80] Z. Xi, N. Zhou, Y. Sun, K. Li, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292(2001)1139-1141. [81] B. Zhu, Study on catalytic material used in HPPO process, Acta Pet. Sin. Pet. Process. Sect. 29(2013)223-227. [82] M. Lin, H. Li, W. Wang, C. He, X. Wu, J. Gao, An olefin epoxidation catalyst, its preparation method, and a method for epoxidation of olefin, CN Pat., 102441429B (2010). [83] W. Wang, J. Gao, H. Li, M. Lin, C. He, X. Wu, X. She, A catalyst, its preparation method and alkene epoxidation method, CN Pat,, 102441430B (2010). [84] H. Li, M. Lin, W. Wang, C. He, X. Wu, J. Gao, A regeneration method of olefin epoxidation catalyst and an olefin epoxidizing method, CN Pat., 102441445B (2010). [85] M. Lin, H. Li, C. He, W. Wang, X. Wu, J. Gao, An alkene epoxidation method, CN Pat., 102442978B (2010). [86] M. Lin, H. Li, W. Wang, J. Long, The preparation of propylene oxide by propylene epoxidation with hydrogen peroxide in 1.0 kt/a pilot plant, Pet. Process. Petrochem. 44(2013)1-4. [87] S. Liu, J. Li, Q. An, L. Wang, Research progress of epoxidation of allyl chloride to epichlorohydrin, Chem. Bulletin.(2010)622-626. [88] R.K. Pandey, R. Kumar, Eco-friendly synthesis of epichlorohydrin catalyzed by titanium silicate (TS-1) molecular sieve and hydrogen peroxide, Catal. Commun. 8(2007)379-382. [89] S. Zhang, H. Zheng, M. Zhu, Technology progress and tech-economic properties on production of epoxy chloropropane, Appl. Chem. Ind.(2014) 32-35.(in Chinese) [90] C. Guo, Comparison between glycerol process and direct epoxidation process of allyl chloride for epichlorohydrin synthesis, Chlor-Alkali Ind. 50(2014)27-29. [91] M.G. Clerici, G. Bellussi, U. Romano, Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite, J. Catal. 129(1991)159-167. [92] L. Wang, Y. Liu, W. Xie, H. Zhang, H. Wu, Y. Jiang, M. He, P. Wu, Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts, J. Catal. 246(2007) 205-214. [93] W. Kim, C. Yun, Y. Kim, J. Park, S. Park, K.T. Jung, Y.H. Lee, S.H. Kim, Modeling of a tubular reactor producing epichlorohydrin with consideration of reaction kinetics and deactivation of titanium silicate-1 catalyst, Ind. Eng. Chem. Res. 50(2011)1187-1195. [94] H. Gao, G. Lu, J. Suo, S. Li, Epoxidation of allyl chloride with hydrogen peroxide catalyzed by titanium silicalite 1, Appl. Catal. A 138(1996)27-38. [95] C. Mario, G.R. Ugo, Process for the epoxidation of olefinic compounds and catalysts used therein, US Pat., 4824976A (1986). [96] S. Liu, S. Zhang, G. Zhao, J. Li, Q. An, S. Gao, Epoxidation of allyl chloride with H2O2 catalyzed by reaction-controlled phase-transfer catalyst under solvent-free conditions, J. Mol. Catal.(China)24(2010)387-391. [97] G. Zhao, J. Li, G. Zhang, Y. Lv, Z. Xi, S. Gao, Epoxidation of allyl chloride to epichlorohydrin by reversibly supported catalyst heteropolyphosphatotungstates/SiO2, Chin. J. Catal.(Chin. Ed.)29(2008) 509-512. [98] Z. Du, Y. Zhang, E. Min, Production method of epichlorohydrin, CN Pat, 2003, p. 1275952C. [99] Y. Zhang, Y. Liu, Z. Du, A TS zeolite catalyst, its preparation method and use, CN Pat., 102259023B (2010). [100] M. Lin, C. Shi, B. Zhu, A method for oxidizing chloropropene, CN Pat., 102757408B (2011). [101] Y. Zhang, Y. Xiong, Y. Liu, Z. Du, Study on the deactivation of TS 1 molecular sieve in catalyzing allyl chloride direct epoxidation, Pet. Process. Petrochem. 37(2006)21-24. [102] Y. Zhang, Z. Du, Y. Liu, Method for continuously producing epichlorohydrin, CN Pat., 101747297B (2008). [103] Y. Zhang, Z. Du, Y. Liu, X. Jin, Process for the separation of epichlorohydrin, CN Pat., 101293882B (2007). [104] Y. Liu, Y. Zhang, Z. Du, Catalyst and a method for decomposing hydrogen peroxide, CN Pat., 106140148B (2015). [105] G. Centi, S. Perathoner, One-step H2O2 and phenol syntheses:examples of challenges for new sustainable selective oxidation processes, Catal. Today 143(2009)145-150. [106] X. Zhang, Direct hydroxylation of benzene to phenol, Prog. Chem 20(2008) 386-395.(in Chinese) [107] W. Wang, M. Yao, Y. Ma, J. Zhang, Direct oxidation of liquid benzene to phenol with molecular oxygen, Prog. Chem.(Beijing, China)26(2014)1665-1672. [108] D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Vignola, A novel iron-based catalyst for the biphasic oxidation of benzene to phenol with hydrogen peroxide, Angew. Chem. Int. Ed. 39(2000)4321-4323. [109] F. Zhang, M. Guo, H. Ge, J. Wang, Hydroxylation of benzene with hydrogen peroxide over highly efficient molybdovanadophosphoric heteropoly acid catalysts, Chin. J. Chem. Eng. 15(2007)895-898. [110] P.M. Reis, J. Armando, L. Silva, J.J.R.F. da Silva, A.J.L. Pombeiro, Amavadine as a catalyst for the peroxidative halogenation, hydroxylation and oxygenation of alkanes and benzene, Chem. Commun. 19(2000)1845-1846. [111] T. Jiang, W. Wang, B. Han, Catalytic hydroxylation of benzene to phenol with hydrogen peroxide using catalysts based on molecular sieves, New J. Chem. 37(2013)1654-1664. [112] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 368(1994)321-323. [113] P. Borah, A. Datta, K.T. Nguyen, Y. Zhao, VOPO4 2H2O encapsulated in graphene oxide as a heterogeneous catalyst for selective hydroxylation of benzene to phenol, Green Chem. 18(2016)397-401. [114] P. Borah, X. Ma, K.T. Nguyen, Y. Zhao, A vanadyl complex grafted to periodic mesoporous organosilica:a green catalyst for selective hydroxylation of benzene to phenol, Angew. Chem. Int. Ed. 51(2012)7756-7761. [115] J. Peng, F. Shi, Y. Gu, Y. Deng, Highly selective and green aqueous-ionic liquid biphasic hydroxylation of benzene to phenol with hydrogen peroxide, Green Chem. 5(2003)224-226. [116] S.I. Niwa, A one-step conversion of benzene to phenol with a palladium membrane, Science 295(2002)105-107. [117] C. Xia, L. Long, B. Zhu, M. Lin, X. Shu, Enhancing the selectivity of Pare-dihydroxybenzene in hollow titanium silicalite zeolite catalyzed phenol hydroxylation by introducing acid-base sites, Catal. Commun. 80(2016)49-52. [118] C. Xia, M. Lin, B. Zhu, X. Peng, Regeneration of irreversible deactivated hollow titanium silicalite zeolite from commercial cyclohexanone ammoximation process, Acta Pet. Sin., Pet. Process. Sect. 34(2018)246-252. [119] L. Hai, T. Zhang, B. Li, S. Jiang, Design and performance of catalysts for direct hydroxylation of phenol to dihydroxybenzene, Prog. Chem. 29(2017)785-795.(in Chinese) |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[2] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 98-105. |
[3] | Wei Zhou, Xiaoxiao Meng, Liang Xie, Junfeng Li, Yani Ding, Yanlin Su, Jihui Gao, Guangbo Zhao. Simultaneous utilization of electro-generated O2 and H2 for H2O2 production: An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 363-368. |
[4] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[5] | Zhaohui Chen, Yasi Mo, Dong Lin, Yongxiao Tuo, Xiang Feng, Yibin Liu, Xiaobo Chen, De Chen, Chaohe Yang. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 98-105. |
[6] | Funing Sang, Jinpei Huang, Jianhong Xu. A circular microreaction method to the safe and efficient synthesis of 3-methylpyridine-N-oxide [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1320-1325. |
[7] | Wenjuan Yan, Wenxiang Zhang, Qi Xia, Shuaishuai Wang, Shuxia Zhang, Jian Shen, Xin Jin. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2542-2548. |
[8] | Guozhu Liu, Hairui Liang, Yajie Tian, Bofeng Zhang, Li Wang. Direct synthesis of hydrogen peroxide over Pd nanoparticles embedded between HZSM-5 nanosheets layers [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2577-2586. |
[9] | Zhipeng Chen, Jiajin Huang, Qiaowen Mu, Huiyong Chen, Feng Xu, Yanxiong Fang, Baoyu Liu. Modification of pillared MFI zeolite nanosheets by nitridation with tailored activity in benzylation of mesitylene and benzyl alcohol [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1981-1987. |
[10] | Edgar N. Tec-Caamal, Refugio Rodríguez-Vázquez, Luis G. Torres-Bustillos, Ricardo Aguilar-López. Kinetic analysis via mathematical modeling for ferrous iron oxidation in a class of SBR-type system [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2472-2480. |
[11] | Xue Kang, Xiaoxun Ma, Jian'an Yin, Xuchun Gao. A study on simultaneous removal of NO and SO2 by using sodium persulfate aqueous scrubbing [J]. Chin.J.Chem.Eng., 2018, 26(7): 1536-1544. |
[12] | Jiajia Luo, Jinfu Wang, Tiefeng Wang. Experimental study of partially decoupled oxidation of ethane for producing ethylene and acetylene [J]. Chin.J.Chem.Eng., 2018, 26(6): 1312-1320. |
[13] | Xinyu Yu, Tianwen Chen, Qi Zhang, Tiefeng Wang. CFD simulations of quenching process for partial oxidation of methane: Comparison of jet-in-cross-flow and impinging flow configurations [J]. Chin.J.Chem.Eng., 2018, 26(5): 903-913. |
[14] | Jing Zhu, Lisong Fan, Lina Song, Fengqiu Chen, Dangguo Cheng. CH4 oxidation to oxygenates with N2O over iron-containing Y zeolites: Effect of preparation [J]. Chin.J.Chem.Eng., 2018, 26(10): 2064-2069. |
[15] | Xin Shi, Enxian Yuan, Guozhu Liu, Li Wang. Effects of porous oxide layer on performance of Pd-based monolithic catalysts for 2-ethylanthraquinone hydrogenation [J]. Chin.J.Chem.Eng., 2016, 24(11): 1570-1576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||