Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 98-105.DOI: 10.1016/j.cjche.2020.08.040
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Zhaohui Chen1, Yasi Mo1, Dong Lin1, Yongxiao Tuo1, Xiang Feng1, Yibin Liu1, Xiaobo Chen1, De Chen2, Chaohe Yang1
Received:
2020-06-29
Revised:
2020-08-14
Online:
2021-12-02
Published:
2021-10-28
Contact:
Xiang Feng, Chaohe Yang
Supported by:
Zhaohui Chen1, Yasi Mo1, Dong Lin1, Yongxiao Tuo1, Xiang Feng1, Yibin Liu1, Xiaobo Chen1, De Chen2, Chaohe Yang1
通讯作者:
Xiang Feng, Chaohe Yang
基金资助:
Zhaohui Chen, Yasi Mo, Dong Lin, Yongxiao Tuo, Xiang Feng, Yibin Liu, Xiaobo Chen, De Chen, Chaohe Yang. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 98-105.
Zhaohui Chen, Yasi Mo, Dong Lin, Yongxiao Tuo, Xiang Feng, Yibin Liu, Xiaobo Chen, De Chen, Chaohe Yang. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production[J]. 中国化学工程学报, 2021, 38(10): 98-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.040
[1] R.L. Myers, The 100 Most Important Chemical Compounds: A Reference Guide, Greenwood Press, Westport (2007) [2] W. Yang, M. Zhou, J. Cai, L. Liang, G. Ren, L. Jiang, Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene, J. Mater. Chem. A 5 (2017) 8070-8080 [3] J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45 (2006) 6962-6984 [4] Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Selective electrochemical H2O2 production through two-electron oxygen electrochemistry, Adv. Energy Mater. 8 (2018) 1801909 [5] K.N. Wood, R. O'Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci. 7 (2014) 1212-1249 [6] J. Li, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Spring London (2008) [7] Q. Chang, P. Zhang, A. Mostaghimi, X. Zhao, S.R. Denny, J. Lee, H. Gao, Y. Zhang, H. Xin, S. Siahrostami, J. Chen, Z. Chen, Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon, Nat. Commun. 11 (2020) 2178 [8] A. Byeon, J. Cho, J. Kim, K. Chae, H. Park, S. Hong, H. Ham, S. Lee, K. Yoon, J. Kim, High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts, Nanoscale Horiz. 5 (2020) 832-838 [9] S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J.W. To, D. Higgins, R. Sinclair, Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide, ACS Sustainable Chem. Eng. 6 (2017) 311-317 [10] T.-N. Pham-Truong, T. Petenzi, C. Ranjan, H. Randriamahazaka, J. Ghilane, Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide, Carbon 130 (2018) 544-552 [11] X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction, ACS Catal. 9 (2019) 11042-11054 [12] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells, Energy Environ. Sci. 4 (2011) 114-130 [13] S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A 5 (2017) 1808-1825 [14] E. Pizzutilo, S.J. Freakley, S. Cherevko, S. Venkatesan, G.J. Hutchings, C.H. Liebscher, G. Dehm, K.J. Mayrhofer, Gold-palladium bimetallic catalyst stability: Consequences for hydrogen peroxide selectivity, ACS Catal. 7 (2017) 5699-5705 [15] E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings, K.J. Mayrhofer, S.J. Freakley, Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production, Chem. Phys. Lett. 683 (2017) 436-442 [16] G.V. Fortunato, E. Pizzutilo, A.M. Mingers, O. Kasian, S. Cherevko, E.S. Cardoso, K.J. Mayrhofer, G. Maia, M. Ledendecker, Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide, J. Phys. Chem. C 122 (2018) 15878-15885 [17] D. Mei, Z. Da He, Y.L. Zheng, D.C. Jiang, Y.-X. Chen, Mechanistic and kinetic implications on the ORR on a Au (100) electrode: pH, temperature and H-D kinetic isotope effects, Phys. Chem. Chem. Phys. 16 (2014) 13762-13773 [18] Y. Lu, Y. Jiang, X. Gao, W. Chen, Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide, Chem. Commun. 50 (2014) 8464-8467 [19] A. von Weber, S.L. Anderson, Electrocatalysis by mass-selected Pt n clusters, Acc. Chem. Res. 49 (2016) 2632-2639 [20] Z. Zheng, Y.H. Ng, D.W. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production, Adv. Mater. 28 (2016) 9949-9955 [21] J. Zhang, B. Huang, Q. Shao, X. Huang, Highly active, selective, and stable direct H2O2 Generation by monodispersive Pd-Ag nanoalloy, ACS Appl. Mater. Interfaces 10 (2018) 21291-21296 [22] Y. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, Highly active and durable PdAg@ Pd core-shell nanoparticles as fuel-cell electrocatalysts for the oxygen reduction reaction, Part. Part. Syst. Charact. 33 (2016) 560-568 [23] S.J. Freakley, Q. He, J.H. Harrhy, L. Lu, D.A. Crole, D.J. Morgan, E.N. Ntainjua, J.K. Edwards, A.F. Carley, A.Y. Borisevich, Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science 351 (2016) 965-968 [24] J. Xu, L. Ouyang, G.-J. Da, Q.-Q. Song, X.-J. Yang, Y.-F. Han, Pt promotional effects on Pd-Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen, J. Catal. 285 (2012) 74-82 [25] F. Li, Q. Shao, M. Hu, Y. Chen, X. Huang, Hollow Pd-Sn nanocrystals for efficient direct H2O2 synthesis: The critical role of Sn on structure evolution and catalytic performance, ACS Catal. 8 (2018) 3418-3423 [26] Q. Zhao, J. An, S. Wang, Y. Qiao, C. Liao, C. Wang, X. Wang, N. Li, Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction, ACS Appl. Mater. Interfaces 11 (2019) 35410-35419 [27] V.S. Pinheiro, E.C. Paz, L.R. Aveiro, L.S. Parreira, F.M. Souza, P.H. Camargo, M.C. Santos, Ceria high aspect ratio nanostructures supported on carbon for hydrogen peroxide electrogeneration, Electrochim. Acta 259 (2018) 865-872 [28] Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production, Angew. Chem. Int. Ed. 58 (2019) 1100-1105 [29] D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado, L. Nasi, M. Bevilacqua, C. Tavagnacco, F. Vizza, M. Prato, N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2, Chemistry 4 (2018) 106-123 [30] T.-P. Fellinger, F.D.R. Hasché, P. Strasser, M. Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide, J. Am. Chem. Soc. 134 (2012) 4072-4075 [31] S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T.R. Kim, Y. Liu, X. Yan, E. Nilsson, Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide, J. Am. Chem. Soc. 140 (2018) 7851-7859 [32] Y. Yang, F. He, Y. Shen, X. Chen, H. Mei, S. Liu, Y. Zhang, A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide, Chem. Commun. 53 (2017) 9994-9997 [33] X. Sheng, N. Daems, B. Geboes, M. Kurttepeli, S. Bals, T. Breugelmans, A. Hubin, I.F. Vankelecom, P.P. Pescarmona, N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2, Appl. Catal. B 176 (2015) 212-224 [34] V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G.A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide, Carbon 95 (2015) 949-963 [35] M. Melchionna, P. Fornasiero, M. Prato, The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions, Adv. Mater. 31 (2019) 1802920 [36] Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials, Nat. Catal. 1 (2018) 156 [37] W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137 (2015) 1436-1439 [38] D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed. 52 (2013) 371-375 [39] J.-C. Li, P.-X. Hou, M. Cheng, C. Liu, H.-M. Cheng, M. Shao, Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions, Carbon 139 (2018) 156-163 [40] L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig, P. Feicht, J.L. Hübner, P. Strasser, S. Eigler, In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene, ACS Catal. 9 (2019) 1283-1288 [41] H.W. Kim, H. Park, J.S. Roh, J.E. Shin, T.H. Lee, L. Zhang, Y.H. Cho, H.W. Yoon, V.J. Bukas, J. Guo, H.B. Park, T.H. Han, B.D. McCloskey, Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction, Chem. Mater. 31 (2019) 3967 [42] L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction, Chem. Commun. 52 (2016) 2764-2767 [43] H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, B.D. McCloskey, Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts, Nat. Catal. 1 (2018) 282 [44] L. Guan, L. Pan, T. Peng, T. Qian, Y. Huang, X. Li, C. Gao, Z. Li, H. Hu, M. Wu, Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting, Carbon 152 (2019) 537-544 [45] P. Li, J. Liu, Y. Wang, Y. Liu, X. Wang, K.-W. Nam, Y.-M. Kang, M. Wu, J. Qiu, Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries, Chem. Eng. J. 286 (2016) 632-639 [46] X. He, N. Zhang, X. Shao, M. Wu, M. Yu, J. Qiu, A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors, Chem. Eng. J. 297 (2016) 121-127 [47] R. Bai, M. Yang, G. Hu, L. Xu, X. Hu, Z. Li, S. Wang, W. Dai, M. Fan, A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke, Carbon 81 (2015) 465-473 [48] E. Jang, S.W. Choi, S.-M. Hong, S. Shin, K.B. Lee, Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation, Appl. Surf. Sci. 429 (2018) 62-71 [49] H.S. Niasar, H. Li, S. Das, T.V.R. Kasanneni, M.B. Ray, C.C. Xu, Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process, J. Environ. Manage. 211 (2018) 63-72 [50] P. Li, J.-Y. Hwang, S.-M. Park, Y.-K. Sun, Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke, J. Mater. Chem. A 6 (2018) 12551-12558 [51] J.R. McConaghy, P.C. Poynor, J.R. Friday, Process for producing premium coke from vacuum residuum, US, 1979. [52] Z. Yang, C. Zhang, S. Gu, P. Han, X. Lu, Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor, Chem. Technol. Fuels Oils 48 (2013) 426-435 [53] T. Liu, L. Ju, Y. Zhou, Q. Wei, S. Ding, W. Zhou, X. Luo, S. Jiang, X. Tao, Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM), Catal. Today 271 (2016) 179-187 [54] T. Zhang, X. Chen, H. Shen, Z. Da, Upgrading of Tsingtao vacuum residuum in supercritical water (I): A preliminary phase structure study by molecular dynamics simulations, Energy Fuels 33 (2019) 3908-3915 [55] Q. Xue, Y. Ding, Y. Xue, F. Li, P. Chen, Y. Chen, 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction, Carbon 139 (2018) 137-144 [56] G. Fu, Y. Liu, Y. Chen, Y. Tang, J.B. Goodenough, J.-M. Lee, Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries, Nanoscale 10 (2018) 19937-19944 [57] C. Han, X. Duan, M. Zhang, W. Fu, X. Duan, W. Ma, S. Liu, S. Wang, X. Zhou, Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation, Carbon 153 (2019) 73-80 [58] L. Sun, C.G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H.G. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors, Chem. Eur. J. 20 (2014) 564-574 [59] X. Hu, X. Sun, S.J. Yooc, B. Evankod, F. Fanb, S. Caia, C. Zheng, W. Hua, G.D. Stucky, Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries, Nano Energy 56 (2019) 828-839 [60] M. Zhang, C. Han, W. Chen, W. Luo, Y. Cao, G. Qian, X. Zhou, X. Duan, S. Wang, X. Duan, Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal, Green Energy Environ. 5 (4) (2020) 444-452 [61] Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence, Carbon 77 (2014) 775-782 [62] Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spoeri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B.R. Cuenya, P. Strasser, ACS Catal. 8 (2018) 2844-2856 [63] V. Briega-Martos, A. Ferre-Vilaplana, A. de la Pena, J.L. Segura, F. Zamora, J.M. Feliu, E. Herrero, An aza-fused pi-conjugated microporous framework catalyzes the production of hydrogen peroxide, ACS Catal. 7 (2016) 1015-1024 [64] F. He, Y. Zheng, H. Fan, D. Ma, Q. Chen, T. Wei, W. Wu, D. Wu, X. Hu, Oxidase-inspired selective 2e/4e reduction of oxygen on electron-deficient Cu, ACS Appl. Mater. Interfaces 12 (2020) 4833-4842 [65] Y. Li, Y. Guo, M. Bao, X. Gao, J. Colloid, Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations, Interface Sci. 361 (2011) 573-580 [66] T. Geng, C. Zhang, Y. Jiang, H. Ju, Y. Wang, Synergistic effect of binary mixtures contained newly cationic surfactant: Interaction, aggregation behaviors and application properties, J. Mol. Liq. 232 (2017) 36-44 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[5] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[6] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[7] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[9] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[10] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[11] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[12] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[13] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||