[1] A. Ateka, P. Pérez-Uriarte, M. Gamero, J. Ereña, A.T. Aguayo, J. Bilbao, A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME, Energy 120 (2017) 796-804 [2] G. Bonura, M. Cordaro, L. Spadaro, C. Cannilla, F. Arena, F. Frusteri, Hybrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation, Appl. Catal. B 140-141 (2013) 16-24 [3] S.P. Naik, T. Ryu, V. Bui, J.D. Miller, N.B. Drinnan, W. Zmierczak, Synthesis of DME from CO2/H2 gas mixture, Chem. Eng. J. 167 (2011) 362-368 [4] G. Leonzio, State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation, J. CO 27 (2018) 326-354 [5] M. Martín, Optimal year-round production of DME from CO2 and water using renewable energy, J. CO 13 (2016) 105-113 [6] S. Ren, S. Li, N. Klinghoffer, M. Yu, X. Liang, Effects of mixing methods of bifunctional catalysts on catalyst stability of DME synthesis via CO2 hydrogenation, Carbon Resources Conversion 2 (2019) 85-94 [7] A. García-Trenco, A. Martínez, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity, Appl. Catal. A 411-412 (2012) 170-179 [8] Y. Tan, H. Xie, H. Cui, Y. Han, B. Zhong, Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase, Catal. Today 104 (2005) 25-29 [9] A. Venugopal, J. Palgunadi, J.K. Deog, O. Joo, C. Shin, Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier, J. Mol. Catal. A: Chem. 302 (2009) 20-27 [10] S. Ren, W.R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, S. Li, M. Yu, X. He, T.A. White, X. Liang, Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation, Fuel 239 (2019) 1125-1133 [11] J. Sun, G. Yang, Y. Yoneyama, N. Tsubaki, Catalysis chemistry of dimethyl ether synthesis, ACS Catal. 4 (2014) 3346-3356 [12] J.T. Sun, I.S. Metcalfe, M. Sahibzada, Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering, Ind. Eng. Chem. Res. 38 (1999) 3868-3872 [13] M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, M. Muhler, Deactivation of supported copper catalysts for methanol synthesis, Catal. Lett. 86 (2003) 77-80 [14] G.R. Moradi, M. Nazari, F. Yaripour, The interaction effects of dehydration function on catalytic performance and properties of hybrid catalysts upon LPDME process, Fuel Process. Technol. 89 (2008) 1287-1296 [15] Y. Wang, W. Gao, K. Li, Y. Zheng, Z. Xie, W. Na, J.G. Chen, H. Wang, Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2, Chem 6 (2020) 419-430 [16] J. Cao, Y. Wang, X. Yu, S. Wang, S. Wu, Z. Yuan, Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation, Appl. Catal. B 79 (2008) 26-34 [17] R. Liu, Z. Qin, H. Ji, T. Su, Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system, Ind. Eng. Chem. Res. 52 (2013) 16648-16655 [18] Y. Zhou, S. Wang, M. Xiao, D. Han, Y. Lu, Y. Meng, Novel Cu-Fe bimetal catalyst for the formation of dimethyl carbonate from carbon dioxide and methanol, RSC Adv. 2 (2012) 6831-6837 [19] K. Sirichaiprasert, A. Luengnaruemitchai, S. Pongstabodee, Selective oxidation of CO to CO2 over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream, Int. J. Hydrogen Energy 32 (2007) 915-926 [20] X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji, Z. Guo, CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis, Chem. Eng. Sci. 153 (2016) 10-20 [21] S. Ren, X. Fan, Z. Shang, W.R. Shoemaker, L. Ma, T. Wu, S. Li, N.B. Klinghoffer, M. Yu, X. Liang, Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation, J. CO 36 (2020) 82-95 [22] Y. Kanai, T. Watanabe, T. Fujitani, T. Uchijima, J. Nakamura, The synergy between Cu and ZnO in methanol synthesis catalysts, Catal. Lett. 38 (1996) 157-163 [23] R. van den Berg, G. Prieto, G. Korpershoek, L.I. van der Wal, A.J. van Bunningen, S. Laegsgaard-Jorgensen, P.E. de Jongh, K.P. de Jong, Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis, Nat. Commun. 7 (2016) 13057 [24] M. Gentzen, W. Habicht, D.E. Doronkin, J.D. Grunwaldt, J. Sauer, S. Behrens, Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis, Catal. Sci. Technol. 6 (2016) 1054-1063 [25] S.A. Kondrat, P.J. Smith, L. Lu, J.K. Bartley, S.H. Taylor, M.S. Spencer, G.J. Kelly, C.W. Park, C.J. Kiely, G.J. Hutchings, Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation, Catal. Today 317 (2018) 12-20 [26] S. Kattel, P. Ramírez, J. Chen, J. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science 355 (2017) 1296-1299 [27] C. Chen, Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction, Appl. Catal. A 257 (2004) 97-106 [28] H. Ban, C. Li, K. Asami, K. Fujimoto, Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2, Catal. Commun. 54 (2014) 50-54 [29] S. Kiatphuengporn, P. Jantaratana, J. Limtrakul, M. Chareonpanich, Magnetic field-enhanced catalytic CO2 hydrogenation and selective conversion to light hydrocarbons over Fe/MCM-41 catalysts, Chem. Eng. J. 306 (2016) 866-875 [30] B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts, J. Catal. 359 (2018) 17-26 [31] I. Abbas, H. Kim, C.-H. Shin, S. Yoon, K.-D. Jung, Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis, Appl. Catal. B 258 (2019) 117971 [32] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics, Fuel Process. Technol. 86 (2004) 33-47 [33] G. Zhao, J. Li, X. Niu, K. Tang, S. Wang, W. Zhu, X. Ma, M. Ru, Y. Yang, Facile synthesis of Mn-doped Fe2O3 nanostructures: Enhanced CO catalytic performance induced by manganese doping, New J. Chem. 40 (2016) 3491-3498 [34] D. Martin, D. Duprez, Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity, J. Phys. Chem. 100 (1996) 9429-9438 [35] Z. Liu, Y. Liu, B. Chen, T. Zhu, L. Ma, Novel Fe-Ce-Ti catalyst with remarkable performance for the selective catalytic reduction of NOnull by NH3, Catal. Sci. Technol. 6 (2016) 6688-6696 [36] A.M. Abdel-Mageed, A. Klyushin, A. Knop-Gericke, R. Schlogl, R.J. Behm, Influence of CO on the activation, O-vacancy formation, and performance of Au/ZnO catalysts in CO2 hydrogenation to methanol, J. Phys. Chem. Lett. 10 (2019) 3645-3653 [37] A. Alvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes, Chem. Rev. 117 (2017) 9804-9838 [38] E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano, CO2 recycling to dimethyl ether: State-of-the-art and perspectives, Molecules 23 (2017) 31 [39] S. Dang, H. Yang, P. Gao, H. Wang, X. Li, W. Wei, Y. Sun, A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation, Catal. Today 330 (2019) 61-75 [40] A. Xin, Z. YiZan, Z. Qiang, W. Dezheng, W. Jinfu, Dimethyl ether synthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst, Ind. Eng. Chem. Res. 47 (2008) 6547-6554 [41] W. Chen, B. Lin, H. Lee, M. Huang, One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity, Appl. Energy 98 (2012) 92-101 [42] F. Frusteri, G. Bonura, C. Cannilla, G. Drago Ferrante, A. Aloise, E. Catizzone, M. Migliori, G. Giordano, Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation, Appl. Catal. B 176-177 (2015) 522-531 [43] G. Moradi, J. Ahmadpour, M. Nazari, F. Yaripour, Effects of feed composition and space velocity on direct synthesis of dimethyl ether from syngas, Ind. Eng. Chem. Res. 47 (2008) 7672-7679 [44] B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol, Ind. Eng. Chem. Res. 58 (2019) 9030-9037 [45] A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies, ACS Catal. 7 (2017) 6493-6513 [46] J.M. López, A.L. Gilbank, T. García, B. Solsona, S. Agouram, L. Torrente-Murciano, The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation, Appl. Catal. B 174-175 (2015) 403-412 [47] J.S. Hayward, P.J. Smith, S.A. Kondrat, M. Bowker, G.J. Hutchings, The effects of secondary oxides on copper-based catalysts for green methanol synthesis, ChemCatChem 9 (2017) 1655-1662 |