Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 252-259.DOI: 10.1016/j.cjche.2021.12.012
• Separation Science and Engineering • Previous Articles Next Articles
Fenghua Geng, Rui Zhang, Luo Wu, Zheng Tang, Han Liu, Haiyan Liu, Zhichang Liu, Chunming Xu, Xianghai Meng
Received:
2021-07-16
Revised:
2021-12-16
Online:
2022-02-25
Published:
2022-01-28
Contact:
Xianghai Meng,E-mail address:mengxh@cup.edu.cn
Supported by:
Fenghua Geng, Rui Zhang, Luo Wu, Zheng Tang, Han Liu, Haiyan Liu, Zhichang Liu, Chunming Xu, Xianghai Meng
通讯作者:
Xianghai Meng,E-mail address:mengxh@cup.edu.cn
基金资助:
Fenghua Geng, Rui Zhang, Luo Wu, Zheng Tang, Han Liu, Haiyan Liu, Zhichang Liu, Chunming Xu, Xianghai Meng. High-efficiency separation and extraction of naphthenic acid from high acid oils using imidazolium carbonate ionic liquids[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 252-259.
Fenghua Geng, Rui Zhang, Luo Wu, Zheng Tang, Han Liu, Haiyan Liu, Zhichang Liu, Chunming Xu, Xianghai Meng. High-efficiency separation and extraction of naphthenic acid from high acid oils using imidazolium carbonate ionic liquids[J]. 中国化学工程学报, 2022, 41(1): 252-259.
[1] C.M. Xu, C.H. Yang, Petroleum Refining Engineering, Petroleum Industry Press, Beijing, 2009. (in Chinese) [2] W.E. Rudzinski, L. Oehlers, Y. Zhang, B. Najera, Tandem mass spectrometric characterization of commercial naphthenic acids and a maya crude oil, Energy Fuels 16(5) (2002) 1178–1185. [3] C.S. Hsu, G.J. Dechert, W.K. Robbins, E.K. Fukuda, Naphthenic acids in crude oils characterized by mass spectrometry, Energy Fuels 14(1) (2000) 217–223. [4] T.P. Fan, Characterization of naphthenic acids in petroleum by fast atom bombardment mass spectrometry, Energy Fuels 5(3) (1991) 371–375. [5] J.M. Schmitter, P. Arpino, G. Guiochon, Investigation of high-molecular-weight carboxylic acids in petroleum by different combinations of chromatography (gas and liquid) and mass spectrometry (electron impact and chemical ionization), J. Chromatogr. A 167(1978) 149–158. [6] C. Subramanian, Corrosion prevention of crude and vacuum distillation column overheads in a petroleum refinery: a field monitoring study, Process. Saf. Prog. 40(2) (2021) 1–10. [7] P.P. Alvisi, V.F.C. Lins, An overview of naphthenic acid corrosion in a vacuum distillation plant, Eng. Fail. Anal. 18(5) (2011) 1403–1406. [8] E.B. Zeinalov, V.M. Abbasov, L.I. Alieva, Petroleum acids and corrosion, Pet. Chem. 49(3) (2009) 185–192. [9] D.M. Jones, J.S. Watson, W. Meredith, M. Chen, B. Bennett, Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction, Anal. Chem. 73(3) (2001) 703–707. [10] J.S. Clemente, P.M. Fedorak, A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids, Chemosphere 60(5) (2005) 585–600. [11] J.G. Speight, Naphthenic acids in petroleum, High Acid Crudes, Elsevier, Amsterdam (2014) 1–29. [12] S.C.B. Edison, W.N.O. Murray Hill, Thermal decomposition of naphthenic acids, U.S. Pat., US5820750(1998). [13] Y. Takemura, A. Nakamura, H. Taguchi, K. Ouchi, Catalytic decarboxylation of benzoic acid, Ind. Eng. Chem. Prod. Res. Dev. 24(2) (1985) 213–215. [14] I. Kubičková, M. Snåre, K.R. Eränen, P. Mäki-Arvela, D.Y. Murzin, Hydrocarbons for diesel fuel via decarboxylation of vegetable oils, Catal. Today 106(1–4) (2005) 197–200. [15] M. Snåre, I. Kubičková, P. Mäki-Arvela, K.R. Eränen, D.Y. Murzin, Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel, Ind. Eng. Chem. Res. 45(16) (2006) 5708–5715. [16] A.H. Zhang, Q.S. Ma, K.S. Wang, X.C. Liu, P. Shuler, Y.C. Tang, Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide, Appl. Catal. A: Gen. 303(1) (2006) 103–109. [17] L.H. Ding, P. Rahimi, R. Hawkins, S. Bhatt, Y. Shi, Naphthenic acid removal from heavy oils on alkaline earth-metal oxides and ZnO catalysts, Appl. Catal. A: Gen. 371(1–2) (2009) 121–130. [18] M.K. Khan, A. Riaz, M. Yi, J. Kim, Removal of naphthenic acids from high acid crude via esterification with methanol, Fuel Process. Technol. 165(2017) 123–130. [19] X.H. Li, J.H. Zhu, Q.L. Liu, B.C. Wu, The removal of naphthenic acids from dewaxed VGO via esterification catalyzed by Mg-Al hydrotalcite, Fuel Process. Technol. 111(2013) 68–77. [20] Y.Z. Wang, X.Y. Sun, Y.P. Liu, C.G. Liu, Removal of naphthenic acids from a diesel fuel by esterification, Energy Fuels 21(3) (2007) 1826. [21] Y.Z. Wang, J.Y. Li, X.Y. Sun, H.L. Duan, C.M. Song, M.M. Zhang, Y.P. Liu, Removal of naphthenic acids from crude oils by fixed-bed catalytic esterification, Fuel 116(2014) 723–728. [22] Y.Z. Wang, Z.S. Chu, B. Qiu, C.G. Liu, Y.N. Zhang, Removal of naphthenic acids from a vacuum fraction oil with an ammonia solution of ethylene glycol, Fuel 85(17–18) (2006) 2489–2493. [23] A.J. Brient, Kirk-Othmer Encyclopedia of Chemical Technology: Naphthenic Acids, John Wiley & Sons, 2000. [24] S.N. Duncum, C.G. Osborne, Process for deacidifying a crude oil system, U.S. Pat., US6464859(2002). [25] V.V. Belova, Y.A. Zakhodyaeva, A.A. Voshkin, Extraction of carboxylic acids with neutral extractants, Theor. Found. Chem. Eng. 51(5) (2017) 786–794. [26] V.G. Gaikar, D. Maiti, Adsorptive recovery of naphthenic acids using ionexchange resins, React. Funct. Polym. 31(2) (1996) 155–164. [27] T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis, Chem. Rev. 99(8) (1999) 2071–2084. [28] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37(1) (2008) 123–150. [29] Y.C. Hou, Y.H. Ren, W. Peng, S.H. Ren, W.Z. Wu, Separation of phenols from oil using imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 52(50) (2013) 18071–18075. [30] X.P. Zhang, Y.G. Bai, R. Yan, H. Gao, Progress in ionic liquids for extraction of organic compounds, Chem. Ind. Eng. Pro. 35(6) (2016) 1587–1605. (in Chinese) [31] L.J. Shi, B.X. Shen, G.Q. Wang, Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids, Energy Fuels 22(6) (2008) 4177–4181. [32] Y. Sun, L. Shi, Basic ionic liquids with imidazole anion: New reagents to remove naphthenic acids from crude oil with high total acid number, Fuel 99(2012) 83–87. [33] K. Anderson, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, D. Wassell, Removal of naphthenic acids from crude oil using amino acid ionic liquids, Fuel 108(2013) 715–722. [34] J.Y. Duan, Y. Sun, L. Shi, Three different types of heterocycle of nitrogencontaining alkaline ionic liquids treatment of acid oil to remove naphthenic acids, Catal. Today 212(2013) 180–185. [35] K. Anderson, M.P. Atkins, P. Goodrich, C. Hardacre, A.S. Hussain, R. Pilus, D.W. Rooney, Naphthenic acid extraction and speciation from Doba crude oil using carbonate-based ionic liquids, Fuel 146(2015) 60–68. [36] S. Nasir Shah, M.I.A. Mutalib, R.B.M. Pilus, K.C. Lethesh, Extraction of naphthenic acid from highly acidic oil using hydroxide-based ionic liquids, Energy Fuels 29(1) (2015) 106–111. [37] R.A. Najmuddin, M.I.A. Mutalib, S.N. Shah, H. Suleman, K.C. Lethesh, R.B.M. Pilus, A.S. Maulud, Liquid-liquid extraction of naphthenic acid using thiocyanate based ionic liquids, Proc. Eng. 148(2016) 662–670. [38] S. Nasir Shah, L. Kallidanthiyil Chellappan, G. Gonfa, M.I.A. Mutalib, R.B.M. Pilus, M.A. Bustam, Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids, Chem. Eng. J. 284(2016) 487–493. [39] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E. N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman,D.J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2009. [40] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7) (2011) 1456–1465. [41] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010) 154104. [42] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7(18) (2005) 3297. [43] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580–592. [44] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14(1) (1996) 33–38. [45] J.D. Holbrey, W.M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R.D. Rogers, Liquid clathrate formation in ionic liquid–aromatic mixtures, Chem. Commun. 4(2003) 476–477. [46] M. Ismail, B.R. Bakaruddin, K.C. Lethesh, M.I.A. Mutalib, S.N. Shah, Experimental and theoretical study on extraction and recovery of naphthenic acid using dicyanamide-based ionic liquids, Sep. Purif. Technol. 213(2019) 199–212. [47] Y.X. Wu, H.Y. Wang, Y.X. Lin, Aqueous solution effects on the proton-transfer processes of GC and AT base pairs, Acta Phys. –Chim. Sin. 30(2) (2014) 257–264. [48] G. Gattow, W. Behrendt, Methyl hydrogen carbonate, Angew. Chem. Int. Ed. Engl. 11(6) (1972) 534–535. [49] R. Lü, C.C. Wu, J. Lin, Y. Xiao, F. Wang, Y.K. Lu, The study on interactions between 1-ethyl-3-methylimidazolium chloride and benzene/pyridine/pyrrole/thiophene, J. Phys. Org. Chem. 30(8) (2017) e3663. [50] S.N. Shah, M. Ismail, M.I.A. Mutalib, R.B.M. Pilus, L.K. Chellappan, Extraction and recovery of toxic acidic components from highly acidic oil using ionic liquids, Fuel 181(2016) 579–586. [51] A. Vila, R.A. Mosquera, AIM study on the protonation of methyl oxiranes, Chem. Phys. Lett. 371(5–6) (2003) 540–547. [52] S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-inmolecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory, J. Comput. Chem. 40(32) (2019) 2868–2881. [53] C. Lefebvre, G. Rubez, H. Khartabil, J.C. Boisson, J. Contreras-García, E. Hénon, Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys. 19(27) (2017) 17928–17936. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[3] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[4] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[5] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[8] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[9] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[10] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[11] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[12] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[13] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[14] | Dandan Ren, Shanshan Xiang, Yuwen Yan, Ruiying Kong, Xingchu Gong. Design and optimization of purification process of sinomenine hydrochloride [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 63-72. |
[15] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||