[1] Y.L. Zhao, X.Z. Yuan, L.B. Jiang, J. Wen, H. Wang, R.P. Guan, J.J. Zhang, G.M. Zeng, Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J. 383(2020) 123089. [2] J. Ordoñez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev. 60(2016) 195–205. [3] K.C. Pan, L. Zhang, W.W. Qian, X.K. Wu, K. Dong, H.T. Zhang, S.J. Zhang, A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries, Adv. Mater. 32(17) (2020) 202000399. [4] Q.P. Zhang, K.C. Pan, M.M. Jia, X.Y. Zhang, L. Zhang, H.T. Zhang, S.J. Zhang, Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solidstate lithium metal batteries, Electrochim. Acta 368(2021) 137593. [5] Y.F. Sha, T. Dong, Q. Zhao, H.S. Zheng, X.G. Wen, S.M. Chen, S.J. Zhang, A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid, Ionics 26(10) (2020) 4803–4812. [6] J.J. Li, F.F. Li, L. Zhang, H.T. Zhang, U. Lassi, X.Y. Ji, Recent applications of ionic liquids in quasi-solid-state lithium metal batteries, Green Chem. Eng. 2(3) (2021) 253–265. [7] Y. Yang, S.Y. Lei, S.L. Song, W. Sun, L.S. Wang, Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries, Waste Manag. 102(2020) 131–138. [8] Y. Yang, F.H. Liu, S.L. Song, H.H. Tang, S.T. Ding, W. Sun, S.Y. Lei, S.M. Xu, Recovering valuable metals from the leaching liquor of blended cathode material of spent lithium-ion battery, J. Environ. Chem. Eng. 8(5) (2020) 104358. [9] X.Y. Guo, X. Cao, G.Y. Huang, Q.H. Tian, H.Y. Sun, Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling, J. Environ. Manage. 198(Pt 1) (2017) 84–89. [10] B. Swain, Recovery and recycling of lithium: a review, Sep. Purif. Technol. 172(2017) 388–403. [11] B. Swain, Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, J. Chem. Technol. Biotechnol. 91(10) (2016) 2549–2562. [12] K.H. Chan, J. Anawati, M. Malik, G. Azimi, Closed-loop recycling of lithium, cobalt, nickel, and manganese from waste lithium-ion batteries of electric vehicles, ACS Sustainable Chem. Eng. 9(12) (2021) 4398–4410. [13] S. Wellens, B. Thijs, K. Binnemans, An environmentally friendlier approach to hydrometallurgy: Highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids, Green Chem. 14(6) (2012) 1657–1665. [14] Y.P. Fu, Y.Q. He, J.L. Li, L.L. Qu, Y. Yang, X.C. Guo, W.N. Xie, Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process, J. Alloy. Compd. 847(2020) 156489. [15] G. Zante, A. Masmoudi, R. Barillon, D. Trébouet, M. Boltoeva, Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids, J. Ind. Eng. Chem. 82(2020) 269–277. [16] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117(10) (2017) 7132–7189. [17] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37(1) (2008) 123–150. [18] J.F. Xiao, R.T. Gao, L. Zhan, Z.M. Xu, Unveiling the control mechanism of the carbothermal reduction reaction for waste Li-ion battery recovery: providing instructions for its practical applications, ACS Sustainable Chem. Eng. 9(28) (2021) 9418–9425. [19] L.L. Chen, Y.H. Chao, X.W. Li, G.L. Zhou, Q.Q. Lu, M.Q. Hua, H.P. Li, X.G. Ni, P.W. Wu, W.S. Zhu, Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries, Green Chem. 23(5) (2021) 2177–2184. [20] L. Xu, C. Chen, M.L. Fu, Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101, Hydrometallurgy 197(2020) 105439. [21] X.L. Zeng, J.H. Li, Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries, J. Hazard. Mater. 271(2014) 50–56. [22] G. Zante, A. Braun, A. Masmoudi, R. Barillon, D. Trébouet, M. Boltoeva, Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents, Miner. Eng. 156(2020) 106512. [23] S. Wellens, R. Goovaerts, C. Möller, J. Luyten, B. Thijs, K. Binnemans, A continuous ionic liquid extraction process for the separation of cobalt from nickel, Green Chem. 15(11) (2013) 3160. [24] R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, M. Ghanadi Maragheh, Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process, Sep. Purif. Technol. 186(2017) 318–325. [25] S. Dhiman, B. Gupta, Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation, J. Clean. Prod. 225(2019) 820–832. [26] Y.X. Yang, X.Q. Meng, H.B. Cao, X. Lin, C.M. Liu, Y. Sun, Y. Zhang, Z. Sun, Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem. 20(13) (2018) 3121–3133. [27] J.P. Chen, Q.W. Li, J.S. Song, D.W. Song, L.Q. Zhang, X.X. Shi, Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries, Green Chem. 18(8) (2016) 2500–2506. [28] Z.J. Du, C.J. Janke, J.L. Li, D.L. WoodIII, High-Speed electron beam curing of thick electrode for high energy density Li-ion batteries, Green Energy Environ. 4(4) (2019) 375–381. [29] C.L. Shi, Y. Jing, J. Xiao, X.Q. Wang, Y. Yao, Y.Z. Jia, Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents, Sep. Purif. Technol. 172(2017) 473–479. [30] J.F. Wang, S.C. Yang, X.F. Zhang, Y.L. Wang, D.G. Wang, W.C. Li, M.A. Ashraf, A.H. Park, X.C. Li, Extraction mechanism of lithium from the alkali solution with diketonate-based ionic liquid extractants, Energ. Fuel. 34(2020) 11581–11589. [31] U. Olsher, R.M. Izatt, J.S. Bradshaw, N.K. Dalley, Coordination chemistry of lithium ion: a crystal and molecular structure review, Chem. Rev. 91(2) (1991) 137–164. [32] T. Hano, M. Matsumoto, T. Ohtake, N. Egashir, F. Hori, Recovery of lithium from geothermal water by solvent extraction technique, Solvent Extr. Ion Exch. 10(2) (1992) 195–206. [33] C.L. Shi, Y. Jing, Y.Z. Jia, Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid, J. Mol. Liq. 215(2016) 640–646. |