[1] K.Y. Oh, N.A. Samad, Y. Kim, J.B. Siegel, A.G. Stefanopoulou, B.I. Epureanu, A novel phenomenological multi-physics model of Li-ion battery cells, J. Power Sources 326 (2016) 447-458. [2] K.Y. Oh, B.I. Epureanu, Characterization and modeling of the thermal mechanics of lithium-ion battery cells, Appl. Energy 178 (2016) 633-646. [3] K.Y. Oh, B.I. Epureanu, A phenomenological force model of Li-ion battery packs for enhanced performance and health management, J. Power Sources 365 (2017) 220-229. [4] E.Y. Zhao, M.M. Chen, Z.B. Hu, D.F. Chen, L.M. Yang, X.L. Xiao, Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating, J. Power Sources 343 (2017) 345-353. [5] J.H. Jo, C.H. Jo, H. Yashiro, S.J. Kim, S.T. Myung, re-heating effect of Ni-rich cathode material on structure and electrochemical properties, J. Power Sources 313 (2016) 1-8. [6] B.H. Song, W.D. Li, P.F. Yan, S.M. Oh, C.M. Wang, A. Manthiram, A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries, J. Power Sources 325 (2016) 620-629. [7] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, J. Power Sources 147 (1-2) (2005) 269-281. [8] Y.H. Choi, H.K. Lim, J.H. Seo, W.J. Shin, J.H. Choi, J.H. Park, Development of standardized battery pack for next-generation PHEVs in considering the effect of external pressure on lithium-ion pouch cells, SAE Int. J. Alt. Power. 7 (3) (2018) 195-205. [9] A. Barai, R. Tangirala, K. Uddin, J. Chevalier, Y. Guo, A. McGordon, P. Jennings, The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells, J. Energy Storage 13 (2017) 211-219. [10] J. Cannarella, C.B. Arnold, Stress evolution and capacity fade in constrained lithium-ion pouch cells, J. Power Sources 245 (2014) 745-751. [11] D. Sauerteig, N. Hanselmann, A. Arzberger, H. Reinshagen, S. Ivanov, A. Bund, Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries, J. Power Sources 378 (2018) 235-247. [12] M. Wünsch, J. Kaufman, D.U. Sauer, Investigation of the influence of different bracing of automotive pouch cells on cyclic liefetime and impedance spectra, J. Energy Storage 21 (2019) 149-155. [13] C. Zhang, J. Xu, L. Cao, Z.N. Wu, S. Santhanagopalan, Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries, J. Power Sources 357 (2017) 126-137. [14] J.M. Foster, X. Huang, M. Jiang, S.J. Chapman, B. Protas, G. Richardson, Causes of binder damage in porous battery electrodes and strategies to prevent it, J. Power Sources 350 (2017) 140-151. [15] A.S. Mussa, M. Klett, G. Lindbergh, R.W. Lindström, Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells, J. Power Sources 385 (2018) 18-26. [16] E.K. Rahani, V.B. Shenoy, Role of plastic deformation of binder on stress evolution during charging and discharging in lithium-ion battery negative electrodes, J. Electrochem. Soc. 160 (8) (2013) A1153-A1162. [17] J.S. Gnanaraj, Y.S. Cohen, M.D. Levi, D. Aurbach, The effect of pressure on the electroanalytical response of graphite anodes and LiCoO2 cathodes for Li-ion batteries, J. Electroanal. Chem. 516 (1-2) (2001) 89-102. [18] C. Peabody, C.B. Arnold, The role of mechanically induced separator creep in lithium-ion battery capacity fade, J. Power Sources 196 (19) (2011) 8147-8153. [19] B. Rieger, S. Schlueter, S.V. Erhard, J. Schmalz, G. Reinhart, A. Jossen, Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery, J. Energy Storage 6 (2016) 213-221. [20] J.H. Lee, H.M. Lee, S. Ahn, Battery dimensional changes occurring during charge/discharge cycles—thin rectangular lithium ion and polymer cells, J. Power Sources 119-121 (2003) 833-837. [21] X.X. Li, H.B. Shi, L.Q. Zhang, J.B. Chen, P.P. Lü, Novel synthesis of SiOx/C composite as high-capacity lithium-ion battery anode from silica-carbon binary xerogel, Chin. J. Chem. Eng. 28 (2) (2020) 579-583. [22] Y. Zhang, O. Briat, J. Delétage, C. Martin, G. Gager, J. Vinassa, Characterization of external pressure effects on lithium-ion pouch cell, in: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 2018. [23] A. Barai, Y. Guo, A. McGordon, P. Jennings, A study of the effects of external pressure on the electrical performance of a lithium-ion pouch cell, in: Proceedings of IEEE International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2013. [24] K.Y. Oh, B.I. Epureanu, A novel thermal swelling model for a rechargeable lithium-ion battery cell, J. Power Sources 303 (2016) 86-96. [25] O. Valentin, P.X. Thivel, T. Kareemulla, F. Cadiou, Y. Bultel, Modeling of thermo-mechanical stresses in Li-ion battery, J. Energy Storage 13 (2017) 184-192. [26] J. Cannarella, C.B. Arnold, State of health and charge measurements in lithium-ion batteries using mechanical stress, J. Power Sources 269 (2014) 7-14. [27] K.Y. Oh, J.B. Siegel, L. Secondo, S.U. Kim, N.A. Samad, J.W. Qin, D. Anderson, K. Garikipati, A. Knobloch, B.I. Epureanu, C.W. Monroe, A. Stefanopoulou, Rate dependence of swelling in lithium-ion cells, J. Power Sources 267 (2014) 197-202. [28] X.M. Liu, C.B. Arnold, Effects of cycling ranges on stress and capacity fade in lithium-ion pouch cells, J. Electrochem. Soc. 163 (13) (2016) A2501-A2507. [29] X.M. Wang, Y. Sone, G. Segami, H. Naito, C. Yamada, and K. Kibe, Understanding Volume Change in Lithium-Ion Cells during Charging and Discharging Using In Situ Measurements, Journal of The Electrochemical Society, 154 (2007) A14-A21. [30] X.M. Wang, Y. Sone, S. Kuwajima, In situ investigation of the volume change in Li-ion cell with charging and discharging, J. Electrochem. Soc. 151 (2) (2004) A273. [31] R.J. Fu, M. Xiao, S.Y. Choe, Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery, Journal of Power Sources 224 (2013) 211-224. [32] L. de Sutter, G. Berckmans, M. Marinaro, J. Smekens, Y. Firouz, M. Wohlfahrt-Mehrens, J. van Mierlo, N. Omar, Comprehensive aging analysis of volumetric constrained lithium-ion pouch cells with high concentration silicon-alloy anodes, Energies 11 (11) (2018) 2948. [33] G. Berckmans, L. de Sutter, M. Marinaro, J. Smekens, J. Jaguemont, M. Wohlfahrt-Mehrens, J. van Mierlo, N. Omar, Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells, Electrochimica Acta 306 (2019) 387-395. [34] L. de Sutter, G. Berckmans, M. Marinaro, M. Wohlfahrt-Mehrens, M. Berecibar, J. van Mierlo, Mechanical behavior of Silicon-Graphite pouch cells under external compressive load: implications and opportunities for battery pack design, J. Power Sources 451 (2020) 227774. [35] A.J. Louli, M. Genovese, R. Weber, S.G. Hames, E.R. Logan, J.R. Dahn, Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells, J. Electrochem. Soc. 166 (8) (2019) A1291-A1299. [36] V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources 195 (15) (2010) 5062-5066. [37] W. Tsutsui, T. Siegmund, N.D. Parab, H. Liao, T.N. Nguyen, W. Chen, State-of-charge and deformation-rate dependent mechanical behavior of electrochemical cells, Exp. Mech. 58 (4) (2018) 627-632. [38] L. Yun, B. Panda, L. Gao, A. Garg, M.J. Xu, D.Z. Chen, C.T. Wang, Experimental combined numerical approach for evaluation of battery capacity based on the initial applied stress, the real-time stress, charging open circuit voltage, and discharging open circuit voltage, Math. Probl. Eng. 2018 (2018) 8165164. [39] E. Sahraei, M. Kahn, J. Meier, T. Wierzbicki, Modelling of cracks developed in lithium-ion cells under mechanical loading, RSC Adv. 5 (98) (2015) 80369-80380. [40] Z.H. Gao, X.T. Zhang, Y. Xiao, H. Gao, H.Y. Wang, C.H. Piao, Influence of low-temperature charge on the mechanical integrity behavior of 18650 lithium-ion battery cells subject to lateral compression, Energies 12 (5) (2019) 797. [41] W.J. Lai, M.Y. Ali, J. Pan, Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions, J. Power Sources 245 (2014) 609-623. [42] J. Xu, B.H. Liu, D.Y. Hu, State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries, Sci. Rep. 6 (2016) 21829. [43] J. Li, Q.T. Qu, L.F. Zhang, L. Zhang, H.H. Zheng, A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings, J. Alloys Compd. 579 (2013) 377-383. [44] M. Marinaro, D.H. Yoon, G. Gabrielli, P. Stegmaier, E. Figgemeier, P.C. Spurk, D. Nelis, G. Schmidt, J. Chauveau, P. Axmann, M. Wohlfahrt-Mehrens, High performance 1.2 Ah Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery, J. Power Sources 357 (2017) 188-197. [45] K. Jalkanen, J. Karppinen, L. Skogström, T. Laurila, M. Nisula, K. Vuorilehto, Cycle aging of commercial NMC/graphite pouch cells at different temperatures, Appl. Energy 154 (2015) 160-172. [46] S.J. Niu, S. heng, G.B. Zhu, J.M. Xu, Q.T. Qu, K. Wu, H.H. Zheng, Analysis on the effect of external press force on the performance of LiNi0.8Co0.1Mn0.1O2/Graphite large pouch cells, J. Energy Storage 44 (2021) 103425. |