Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 73-84.DOI: 10.1016/j.cjche.2021.09.007
• Review • Previous Articles Next Articles
Xiaobin Liu1, Zhenguo Gao1, Jingcai Cheng2, Junbo Gong1,3, Jingkang Wang1,3
Received:
2021-06-30
Revised:
2021-09-04
Online:
2022-02-25
Published:
2022-01-28
Contact:
Junbo Gong,E-mail address:Junbo_gong@tju.edu.cn
Supported by:
Xiaobin Liu1, Zhenguo Gao1, Jingcai Cheng2, Junbo Gong1,3, Jingkang Wang1,3
通讯作者:
Junbo Gong,E-mail address:Junbo_gong@tju.edu.cn
基金资助:
Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 73-84.
Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries[J]. 中国化学工程学报, 2022, 41(1): 73-84.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.09.007
[1] H.X. Wang, Y.G. Feng, W.K. Zhong, China's development status of chemicals for integrated circuit, Mod. Chem. Ind. 38(11)(2018)1-7.(in Chinese) [2] S. Daigle, E. Vogelsberg, B. Lim, I. Butcher, Electronic Chemicals, Wiley-VCH, 2007. [3] S.L. Yellin, D. Hodge, M. Hearon, Getting electronic chemicals to the point of use:as smaller semiconductors are made in larger volumes, ultrapure chemicals and gases will have to be delivered in bulk quantities,(Pristine Processing), Chem. Eng. 109(8)(2002)53-57. [4] P. Cao, T.X. Li, J. Zhu, Preparation technology and present development status of electronic-grade sulphuric acid, Inorg. Chem. Ind. 44(3)(2012)8-11.(in Chinese) [5] C. Delmas, Sodium and sodium-ion batteries:50 years of research, Adv. Energy Mater. 8(17)(2018)1703137. [6] Y. Li, Research on the development status and prospect of electronic chemical industry, Mod. Chem. Ind. 38(01)(2020)18-20. [7] Y.P. Guo, H.Q. Li, T.Y. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater 29(29)(2017)1700007. [8] E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao, X. Ren, W. Fu, A. Magasinski, K. Turcheniuk, G. Yushin, Lithium-iron (III) fluoride battery with double surface protection, Adv. Energy Mater. 8(26)(2018)1800721. [9] N. von Aspern, G.V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium:ideal partners for high-performance rechargeable battery electrolytes, Angew. Chem. Int. Ed. Engl. 58(45)(2019)15978-16000. [10] W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang, Z. Sun, Selective recovery of valuable metals from spent lithium-ion batteries-process development and kinetics evaluation, J. Clean. Prod. 178(2018)833-845. [11] Y.P. Cheng, Y. Li, S. Jiang, H.Q. Xie, The recovery of lithium cobalt oxides from spent Li-ion batteries and its electrochemical performances, 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2016, pp. 204-208. [12] L.L. Zhang, D. Ma, T. Li, J. Liu, X.K. Ding, Y.H. Huang, X.L. Yang, Polydopaminederived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries, ACS Appl. Mater. Interfaces 10(43)(2018) 36851-36859. [13] Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang, Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling, Adv. Sci.(Weinh.)5(9)(2018) 1800680. [14] M.A. Reddy, B. Breitung, C. Wall, S. Trivedi, V.S.K. Chakravadhanula, M. Helen, M. Fichtner, Facile synthesis of carbon-metal fluoride nanocomposites for lithium-ion batteries, Energy Technol. 4(1)(2016)201-211. [15] R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Barker, LiVPO4F:a new active material for safe lithium-ion batteries, Solid State Ionics 177(26-32)(2006)2635-2638. [16] S. Okada, M. Ueno, Y. Uebou, J.-I. Yamaki, Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries, J. Power Sources 146(1-2)(2005) 565-569. [17] M. Nagahama, N. Hasegawa, S. Okada, High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes, J. Electrochem. Soc. 157 (6)(2010) A748. [18] Y. Li, X.Z. Zhou, Y. Bai, G.H. Chen, Z.H. Wang, H. Li, F. Wu, C. Wu, Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries, ACS Appl. Mater. Interfaces 9(23)(2017) 19852-19860. [19] C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. LancerosMéndez, Silica/poly (vinylidene fluoride) porous composite membranes for lithium-ion battery separators, J. Membr. Sci. 564(2018)842-851. [20] B. Ameduri, From vinylidene fluoride (VDF) to the applications of VDFcontaining polymers and copolymers:recent developments and future trends, Chem. Rev. 109(12)(2009)6632-6686. [21] M.J. Koh, H.Y. Hwang, D.J. Kim, H.J. Kim, Y.T. Hong, S.Y. Nam, Preparation and characterization of porous PVdF-HFP/clay nanocomposite membranes, J. Mater. Sci. Technol. 26(7)(2010)633-638. [22] H.S. Jeong, S.C. Hong, S.Y. Lee, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries, J. Membr. Sci. 364(1-2)(2010)177-182. [23] Y. Kano, N. Sato, S. Akiyama, Controlling of pressure sensitive adhesive properties by blending poly (vinylidene fluoride-co-hexafluoro acetone) into poly (ethylacrylate) adhesive, Polym. J. 23(12)(1991)1489-1497. [24] L. Gao, Synthesis and research of fluorinated acrylate adhesive for lithium-ion battery Ph. D. Thesis, Donghua Univ., China, 2015. [25] M. Kato, H. Sano, T. Kiyobayashi, N. Takeichi, M. Yao, Conductive polymer binder and separator for high energy density lithium organic battery, MRS Commun. 9(3)(2019)979-984. [26] C.H. Feng, Preparation and properties of fluorine-containing separator materials for lithium ion batteries, Ph. D. Thesis, Jinan Univ., China, 2014. [27] R.E. Sousa, M. Kundu, A. Gören, M.M. Silva, L.F. Liu, C.M. Costa, S. LancerosMendez, Poly (vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion, RSC Adv. 5(110)(2015)90428-90436. [28] J. Zhao, L. Liao, F.F. Shi, T. Lei, G.X. Chen, A. Pei, J. Sun, K. Yan, G.M. Zhou, J. Xie, C. Liu, Y.Z. Li, Z. Liang, Z.N. Bao, Y. Cui, Surface fluorination of reactive battery anode materials for enhanced stability, J. Am. Chem. Soc. 139(33)(2017) 11550-11558. [29] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375(1-2)(2011)1-27. [30] C.-N. Wei, C. Karuppiah, C.-C. Yang, J.-Y. Shih, S.J. Lue, Bifunctional perovskite electrocatalyst and PVDF/PET/PVDF separator integrated split test cell for high performance Li-O2 battery, J. Phys. Chem. Solids 133(2019)67-78. [31] D.R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value, Electrochim. Acta 184(2015)410-416. [32] Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode, J. Power Sources 329(2016)31-40. [33] B. Li, Y. Wang, H. Lin, X. Wang, M. Xu, Y. Wang, L. Xing, W. Li, Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting, J. Power Sources 267 (2014)182-187. [34] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104(10)(2004)4303-4418. [35] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114(23)(2014)11503-11618. [36] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem 4(1)(2018)174-185. [37] T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.-W. Meyer, S. Passerini, M. Winter, Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc. 159(11) (2012) A1755-A1765. [38] T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries, J. Electrochem. Soc 156(6)(2009) A483. [39] N. Azimi, Z. Xue, I. Bloom, M.L. Gordin, D. Wang, T. Daniel, C. Takoudis, Z. Zhang, Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries, ACS Appl. Mater. Interfaces 7(17)(2015)9169-9177. [40] S. Pizzini, M. Acciarri, S. Binetti, From electronic grade to solar grade silicon: Chances and challenges in photovoltaics, Phys. Status Solidi A Appl. Mater. Sci. 202(15)(2005)2928-2942. [41] S.S. Zhang, K. Xu, T.R. Jow, Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB, J. Power Sources 156 (2)(2006)629-633. [42] J. Kasnatscheew, R.W. Schmitz, R. Wagner, M. Winter, R. Schmitz, Fluoroethylene carbonate as an additive for c-butyrolactone based electrolytes, J. Electrochem. Soc. 160(9)(2013) A1369-A1374. [43] X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives, ACS Energy Lett. 3(1)(2018)14-19. [44] G.A. Elia, J.-B. Park, Y.-K. Sun, B. Scrosati, J. Hassoun, Role of the lithium salt in the performance of lithium-oxygen batteries:a comparative study, ChemElectroChem 1(1)(2014)47-50. [45] B.S. Parimalam, B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries:LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, J. Electrochem. Soc 165 (2)(2018) A251-A255. [46] L. Zheng, H. Zhang, P. Cheng, Q. Ma, J. Liu, J. Nie, W. Feng, Z. Zhou, Li[(FSO2)n(C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures:a comprehensive understanding with chemical, electrochemical and XPS analysis, Electrochim. Acta 196(2016)169-188. [47] R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility, J. Power Sources 271(2014)291-297. [48] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 v lithium-ion battery chemistry, Energy Environ. Sci 6(6)(2013)1806. [49] D.B. Shah, K.R. Olson, A. Karny, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Effect of anion size on conductivity and transference number of perfluoroether electrolytes with lithium salts, J. Electrochem. Soc. 164(14) (2017) A3511-A3517. [50] Q. Ma, Z. Fang, P. Liu, J. Ma, X. Qi, W. Feng, J. Nie, Y.-S. Hu, H. Li, X. Huang, L. Chen, Z. Zhou, Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl) (trifluoromethanesulfonyl) imide, ChemElectroChem 3(4)(2016)531-536. [51] C. Liao, K.S. Han, L. Baggetto, D.A. Hillesheim, R. Custelcean, E.-S. Lee, B. Guo, Z. Bi, D.-e. Jiang, G.M. Veith, E.W. Hagaman, G.M. Brown, C. Bridges, M.P. Paranthaman, A. Manthiram, S. Dai, X.-G. Sun, Synthesis and characterization of lithium bis (fluoromalonato) borate for lithium-ion battery applications, Adv. Energy Mater. 4(6)(2014)1301368. [52] J. Arai, A. Matsuo, T. Fujisaki, K. Ozawa, A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries, J. Power Sources 193(2) (2009)851-854. [53] Y. Ein-Eli, S.R. Thomas, R. Chadha, T.J. Blakley, V.R. Koch, Li-ion battery electrolyte formulated for low-temperature applications, J. Electrochem. Soc. 144(3)(1997)823-829. [54] L.A. Dominey, Methide salts, formulations, electrolytes and batteries formed therefrom, U.S. Pat. 05273840, 1993. [55] C.W. Walker, J.D. Cox, M. Salomon, Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris (trifluoromethanesulfonyl) methide, J. Electrochem. Soc. 143(4)(1996) L80-L82. [56] L. Feng, H. Cui, A new solid-state electrolyte:Rubbery ‘polymer-in-salt’ containing LiN (CF3SO2)2, J. Power Sources 63(1)(1996)145-148. [57] I. Belharouak, H. Tsukamoto, K. Amine, LiNi0.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries, J. Power Sources 119-121 (2003)175-177. [58] C. Daniel, Materials and processing for lithium-ion batteries, JOM 60(9) (2008)43-48. [59] G. Yan, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, J. Wang, Fluorinated solvents for high-voltage electrolyte in lithium-ion battery, J. Solid State Electrochem. 21(6)(2017)1589-1597. [60] G.M. Veith, M. Doucet, R.L. Sacci, B. Vacaliuc, J.K. Baldwin, J.F. Browning, Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive, Sci. Rep. 7(1)(2017) 6326. [61] N. Nambu, Y. Sasaki, Physical and electrolytic properties of monofluorinated ethyl acetates and their application to lithium secondary batteries, Open J. Met. 05(01)(2015)1-9. [62] P. Shi, S. Fang, D. Luo, L. Yang, S.-I. Hirano, A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for highperformance lithium ion batteries, J. Electrochem. Soc. 164(9)(2017) A1991-A1999, https://doi.org/10.1149/2.1181709jes. [63] R. Schmitz, R. Schmitz, R. Müller, O. Kazakova, N. Kalinovich, G.-V. Röschenthaler, M. Winter, S. Passerini, A. Lex-Balducci, Methyl tetrafluoro-2-(methoxy) propionate as co-solvent for propylene carbonate-based electrolytes for lithium-ion batteries, J. Power Sources 205(2012)408-413. [64] P.R. Raimann, A. Trifonova, K.-C. Möller, J.O. Besenhard, M. Winter, M.R. Wagner, Dilatometric and mass spectrometric investigations on lithium ion battery anode materials, Anal. Bioanal. Chem. 379(2)(2004)272-276. [65] M.R. Wagner, J.H. Albering, K.-C. Moeller, J.O. Besenhard, M. Winter, XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes, Electrochem. Commun. 7(9)(2005)947-952. [66] C.-C. Su, M. He, P.C. Redfern, L.A. Curtiss, I.A. Shkrob, Z. Zhang, Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithiumion batteries, Energy Environ. Sci. 10(4)(2017)900-904. [67] Y. Horowitz, H.-L. Han, W.T. Ralston, J.R. de Araujo, E. Kreidler, C. Brooks, G.A. Somorjai, Fluorinated end-groups in electrolytes induce ordered electrolyte/ anode interface even at open-circuit potential as revealed by sum frequency generation vibrational spectroscopy, Adv. Energy Mater. 7(17)(2017) 1602060. [68] S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of Li-ion battery electrolytes:flash point and self-extinguishing time measurements, J. Electrochem. Soc. 162(2)(2015) A3084-A3097. [69] J. Yun, L. Zhang, Q. Qu, H. Liu, X. Zhang, M. Shen, H. Zheng, A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate for 5 V lithium-ion batteries, Electrochim. Acta 167(2015)151-159. [70] J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.-Y. Sanchez, S. Passerini, Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co) solvent, ChemSusChem 7(10)(2014)2939-2946. [71] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, J. Electrochem. Soc. 149(8)(2002) A1079. [72] P. Murmann, N. von Aspern, P. Janssen, N. Kalinovich, M. Shevchuk, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries, J. Electrochem. Soc 165(9)(2018) A1935-A1942. [73] P. Murmann, X. Mönnighoff, N. von Aspern, P. Janssen, N. Kalinovich, M. Shevchuk, O. Kazakova, G.-V. Röschenthaler, I. Cekic-Laskovic, M. Winter, Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries:studies on fluorinated compounds deriving from triethyl phosphate, J. Electrochem. Soc. 163(5) (2016) A751-A757. [74] N. von Aspern, S. Röser, B. Rezaei Rad, P. Murmann, B. Streipert, X. Mönnighoff, S.D. Tillmann, M. Shevchuk, O. Stubbmann-Kazakova, G.-V. Röschenthaler, S. Nowak, M. Winter, I. Cekic-Laskovic, Phosphorus additives for improving high voltage stability and safety of lithium ion batteries, J. Fluor. Chem. 198(2017)24-33. [75] J. Xia, R. Petibon, A. Xiao, W.M. Lamanna, J.R. Dahn, Some fluorinated carbonates as electrolyte additives for Li (Ni0.4Mn0.4Co0.2)O2/graphite pouch cells, J. Electrochem. Soc. 163(8)(2016) A1637-A1645. [76] J.P. Yang, L. Wang, P. Zhao, Y.M. Shang, J.J. Li, X.M. He, Research progress of flame retardant additives for lithium ion battery electrolyte, Adv. Mater. Ind. 4 (2013)64-69. [77] C. Buhrmester, J. Chen, L. Moshurchak, J.W. Jiang, R.L. Wang, J.R. Dahn, Studies of aromatic redox shuttle additives for LiFePO[sub 4]-based Li-ion cells, J. Electrochem. Soc. 152(12)(2005) A2390-A2399. [78] C.Y. Ren, H. Lu, M. Jia, Z.A. Zhang, Y.Q. Lai, J. Li, Application of 1, 2-dimethoxy-4-nitro-benzene and 1, 4-dimethoxy-2-nitro-benzene as overcharge protection additives in lithium-ion batteries, Acta Phys.-Chim. Sin. 28(9) (2012)2091-2096. [79] M. Nie, J. Xia, J.R. Dahn, Development of pyridine-boron trifluoride electrolyte additives for lithium-ion batteries, J. Electrochem. Soc. 162(7)(2015) A1186-A1195. [80] Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim, S.-W. Song, Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes, J. Phys. Chem. C 118(20)(2014)10631-10639. [81] L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use, J. Phys. Chem. B 113(52) (2009)16596-16602. [82] M.Q. Xu, L.D. Xing, W.S. Li, X.X. Zuo, D. Shu, G.L. Li, Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery, J. Power Sources 184(2)(2008)427-431. [83] W. Weng, Z. Zhang, J.A. Schlueter, P.C. Redfern, L.A. Curtiss, K. Amine, Improved synthesis of a highly fluorinated boronic ester as dual functional additive for lithium-ion batteries, J. Power Sources 196(4)(2011)2171-2178. [84] K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio, Additivescontaining functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries, Electrochim. Acta 49(26)(2004)4613-4622. [85] M. Xu, Y. Liang, B. Li, L. Xing, Y. Wang, W. Li, Tris (pentafluorophenyl) phosphine:a dual functionality additive for flame-retarding and sacrificial oxidation on LiMn2O4 for lithium ion battery, Mater. Chem. Phys. 143(3) (2014)1048-1054. [86] J.-G. Han, J.B. Lee, A. Cha, T.K. Lee, W. Cho, S. Chae, S.J. Kang, S.K. Kwak, J. Cho, S.Y. Hong, N.-S. Choi, Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries, Energy Environ. Sci. 11(6)(2018)1552-1562. [87] W. Cao, Application of fluorinated compounds in lithium ion batteries, Organo-fluorine Ind.(2)(2019)23-27. [88] L.D. Ellis, I.G. Hill, K.L. Gering, J.R. Dahn, Synergistic effect of LiPF6and LiBF4as electrolyte salts in lithium-ion cells, J. Electrochem. Soc 164(12)(2017) A2426-A2433. [89] S.U. Yoon, H. Kim, H.-J. Jin, Y.S. Yun, Effects of fluoroethylene carbonateinduced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries, Appl. Surf. Sci. 547(2021)149193. [90] E. Markevich, G. Salitra, A. Rosenman, Y. Talyosef, F. Chesneau, D. Aurbach, Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries, Electrochem. Commun. 60 (2015)42-46. [91] J. Xu, W.H. Yao, Y.W. Yao, Z.C. Wang, Y. Yang, Effect of fluoroethylene carbonate additive on the performance of lithium ion battery, Acta Phys.-Chimica Sin. 25(2)(2009)201-206.(in Chinese) [92] Y.L. Zhu, Synthesis of polyvinylidene fluoride, China Plast. Ind. 33(S1)(2005) 67-69.(in Chinese) [93] H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, J. Power Sources 161(1)(2006)573-579. [94] E. Zinigrad, L. Larush-Asraf, J.S. Gnanaraj, M. Sprecher, D. Aurbach, On the thermal stability of LiPF6, Thermochim. Acta 438(1-2)(2005)184-191. [95] Y.F. Zhao, H.T. Zhang, Preparation process of high-quality LiPF6 crystals, Chin. J. Process Eng. 18(6)(2018)1160-1166. [96] Y.S. Liu, Study on the preparation of six fluorine lithium phosphate, Low Temp. Spec. Gases 33(2)(2015)20-24. [97] J.H. Simmons, Practice of fluorine science in lithium hexafluorophosphate, J. Fluorine. Chem. 9(1)(1950)154-165. [98] P.J. Yang, Y.Z. Wang, X.Z. Wang, H.S. Chen, H.J. Zheng, Research progress on synthesis technology of high quality lithium hexafluorophosphate, Zhejiang Chem. Ind. 51(10)(2020)8-12. [99] A.A. Smagin, V.A. Matyukha, V.P. Korobtsev, Application of thermogravimetric studies for optimization of lithium hexafluorophosphate production, J. Power Sources 68(2)(1997)326-327. [100] R.D.W. Kemmitt, D.R. Russell, D.W.A. Sharp, 844. The structural chemistry of complex fluorides of general formula AIBVF6, J. Chem. Soc.(1963)4408. [101] J.G. Zhang, Y. Wang, Progress in preparation of lithium hexafluorophosphate electrolyte and analysis on difficulties thereof, Inorg. Chem. Ind. 44(6)(2012) 57-60. [102] J.C. Chen, J.Q. Li, S. Zheng, Y.L. Guo, Progress in preparation of electrolyte LiPF6, Chin. J. Power Sources 43(11)(2019)1891-1893. [103] B. Ning, J.X. Zou, Research progress on preparation of lithium hexafluorophosphate, Guizhou Chem. Ind. 36(5)(2011)26-28. [104] W.H. Xu, A novel technology on preparation of batterty-grade LiPF6 by the method of the complex dissociation, Ph. D. Thesis, Nanchang:Nanchang University, China,(2015). [105] X.L. Cui, S.Y. Li, Z.M. Wu, Y. Zhou, H.M. Luo, Thermal decomposition kinetics of LiBF4, J. Jilin Univ., Sci. Ed. 47(6)(2009)1323-1327. [106] Y.H. Ren, B.R. Wu, C.W. Yang, F. Wu, F.B. Chen, Review of new lithium slats of electrolyte for Li-ion batteries, Chin. J. Power Sources 35(9)(2011)1172-1174. [107] Z.M. Wang, X.X. He, D.Q. Sun, Practical Infrared Spectrometry, Petrol Chemical Industry Press, Beijing, 1978. [108] M. Xin, W.H. Hu, Group Theory and chemistry, High Education Press, Beijing, 1984. [109] Y.S. Ning, X.F. Guo, H. Xu, Q.Y. Zhao, X.H. Sun, A preparation method of anhydrous high purity lithium tetrafluoroborate, China Pat. 101863489 (2010). [110] J.L. Sang, Q.Y. Zhao, D.F. Liu, Preparation and characterization of LiBF4 electrolyte of lithium ion batteries, Inorg. Chem. Ind. 47(07)(2015)75-78. [111] J. Wang, H.Y. Song, Preparation method of lithium tetrafluoroborate for lithium ion battery, Inorg. Chem. Ind. 20(10)(2013)9-11. [112] Y. Zhou, X.Y. Zhang, X.Y. Deng, Z.M. Wu, G.J. Cao, Preparation of anhydrous lithium tetrafluoroborate, China Pat., 100593515C,(2010). [113] S. Angaiah, V. Thiagarajan, G. Ramaiyer, Process for the preparation of LiBF4, US Pat., 6623717,(2003). [114] H. Friedrich, J. Simon, Method for producing highly pure LiBF4, US Pat., 6537512,(2003). [115] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1)(2012)965-976. [116] B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, J.C. Zhao, F. Wu, Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, J. Solid State Electrochem. 17(3)(2013)811-816. [117] M. Kobayashi, T. Inokuchi, S. Yamashita, Production of 4-fluoro-1,3-dioxolan-2-one, Japan Pat., 2000309583,(2000). [118] B. Olaf, Z. Dirk, P. Katya, Preparation of 4-fluoro-1,3-dioxocene-2-one, China Pat. 200480003940,(2004). [119] J.H. Simons, Fluorine chemistry, Academic Press, America, 1950. [120] Z.J. Yamauchi, M.J. Tanaka, M.T. Gao, Manufacturing method of 4-fluoro-1,3-dioxolane-2-one, China Pat, 200880024559.0,(2008). [121] R.J. Li, X.J. Wang, Z.L. Chen, R.Y. Ding, L.P. Fang, A synthetic method of vinyl fluorocarbonate, China Pat. 200810071778.6,(2008). [122] M.X. Wu, G.H. Fang, Y. Pan, J.Y. Huang, B.Q. Lu, A method for synthesis of vinyl fluorocarbonate by phase transfer catalysis, China Pat. 200910111559, (2009). [123] G.R. Xu, D. Liu, S.K. Yao, G.H. Liu, Preparation method of fluoroethylene carbonate, China Pat. 201310019550.3,(2013). [124] J.L. Shen, X.L. Zhang, Z.Y. Yang, W.F. Li, L.Y. Zhang, Methods of removing acid and water from fluoroethylene carbonate, China Pat. 200910213448.0, (2009). [125] M.T. Gao, Z.J. Yamauchi, F.M. Gu, Manufacturing method of 4-fluorine-1,3-dioxygentyl-2-one, China Pat, 200910118346.0,(2009). [126] T.T. Wang, J.M. Herbert, A.M. Glass, The applications of ferroelectric polymers, Blackie, Glasgow, 1988. [127] S.X. Song, S. Xia, Y. Liu, X. Lv, S.L. Sun, Effect of Na+MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites, Chem. Eng. J. 384(2020)123365. [128] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries, J. Membr. Sci. 329(1-2)(2009)56-59. [129] S.W. Choi, S.M. Jo, W.S. Lee, Y.-R. Kim, An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications, Adv. Mater. 15 (23)(2003)2027-2032. [130] N. Wang, Y. NuLi, S. Su, J. Yang, J. Wang, Effects of binders on the electrochemical performance of rechargeable magnesium batteries, J. Power Sources 341(2017)219-229. [131] M. Yoo, C.W. Frank, S. Mori, S. Yamaguchi, Effect of poly (vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer 44(15)(2003)4197-4204. [132] H.L. Wang, W.H. Liu, X.F. Li, N. Tang, J. Wang, A preparation method of polyvinylidene fluoride for lithium battery adhesive, China Pat., 104530276B, (2017). [133] H.J. Yang, Q.F. Chen, X.Z. Wan, B.F. Zheng, Z.K. Peng, X.C. Deng, A PVDF surface modified core-shell structure lithium battery binder and its preparation method and application, China Pat. 202010496003(4)(2017). [134] Y.F. Zhao, Study on green preparation process and application of high quality LiPF6, Ph. D. Thesis, Univ. of Chinese Academy of Sciences, Beijing,(2018). [135] J. Liu, Y. Cai, C. Xiao, H. Zhang, F. Lv, C. Luo, Z.H. Hu, Y.T. Cao, B. Cao, L. Yu, Synthesis of LiPF6 using CaF2 as the fluorinating agent directly:an advanced industrial production process fully harmonious to the environments, Ind. Eng. Chem. Res. 58(44)(2019)20491-20494. [136] J.W. Liu, X.H. Li, Z.X. Wang, H.J. Guo, W.J. Peng, Y.H. Zhang, Q.Y. Hu, Preparation and characterization of lithium hexafluorophosphate for lithiumion battery electrolyte, Trans. Nonferrous Met. Soc. China 20(2)(2010)344-348. [137] M.M. Tian, Preparation lithium hexafluorophate of battery level with complexometry and studies on electrochemical performance, Thesis, Nanchang Univ, Nanchang, 2013. [138] D.M. Zheng, H.X. Guo, W.H. Xu, Q.X. Chen, Complex dissociation synthesis of batterty-grade LiPF6, Chem. Res. Appl. 28(06)(2016)867-870. [139] M. Huang, B. Huang, Purification of lithium hexafluorophosphate, China Pat. (2016)103539168. [140] J.B. Li, Y.J. Wang, C.S. Yan, K. Li, Y.Y. Li, X. Wang, J. Li, B.J. Dong, Purification of lithium hexafluorophosphate, China Pat.,107055574,(2017). [141] Y.C. Mo, Y.Z. Li, C.K. Xu, L.Z. Mao, J.Z. Jin, Lithium hexafluorophosphate and its crystallization and preparation method, lithium-ion battery electrolyte and lithium-ion battery, China Pat., 112340754,(2017). [142] L.L. Missoni, F. Marchini, M. del Pozo, E.J. Calvo, A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine, J. Electrochem. Soc. 163 (9)(2016) A1898-A1902. [143] J. Lee, S.-H. Yu, C. Kim, Y.-E. Sung, J. Yoon, Highly selective lithium recovery from brine using a k-MnO2-Ag battery, Phys. Chem. Chem. Phys. 15(20)(2013) 7690. [144] A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 cell, ChemSusChem 12(7)(2019)1361-1367. [145] M.Y. Hou, L. Chen, Z.W. Guo, X.L. Dong, Y.G. Wang, Y.Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production, Nat. Commun. 9(1)(2018)438. [146] A. Zhao, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, A membrane-free and energy-efficient three-step chlor-alkali electrolysis with higher-purity NaOH production, ACS Appl. Mater. Interfaces 11(48)(2019) 45126-45132. [147] Y.Y. Ma, X.L. Dong, Y.G. Wang, Y.Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode, Angew. Chem. Int. Ed. Engl. 57(11)(2018)2904-2908. [148] A. Zhao, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, Efficient and facile electrochemical process for the production of high-quality lithium hexafluorophosphate electrolyte, ACS Appl. Mater. Interfaces 12(29)(2020) 32771-32777. [149] J.W. Liu, X.H. Li, Z.X. Wang, H.J. Guo, Q.Y. Hu, LiBF4 electrolyte for lithium-ion battery:preparation and characterization, Chin. J. Inorg. Chem. 25(1)(2009) 31-36.(in Chinese) [150] Y. Mochida, T. Tateno, K. Momota, Synthesis of anhydrous lithium tetrafluoroborate, Japan Pat. 56145113,(1981). [151] D.N. Zhao, D. Lei, P. Wang, S.Y. Li, H.M. Zhang, X.L. Cui, Synthesis, waterremoving method and influences of trace water for LiBF4, ChemistrySelect 4 (19)(2019)5853-5859. [152] Chan NaDu, Preparation of lithium fluoroborate, Korean Pat. 20000519230, (2000). [153] Q.Q. Lan, D.M. Zheng, J.H. Peng, Optimization of the preparation process and research of electrochemical performance of battery grade lithium tetrafluoroborate, New Chem. Mater. 44(9)(2016)237-239.(in Chinese) [154] S. Angaiah, V. Thiagarajan, G. Ramaiyer, The preparation method of lithium tetrafluoroborate, US, Pat., 6537512,(2003). [155] J.L. Sang, K. Wang, D.F. Liu, Preparation research of lithium tetrafluoroborate, Inorg. Chem. Ind. 50(5)(2018)30-32.(in Chinese) [156] B.Q. Yu, A manufacturing method of battery grade lithium tetrafluoroborate, Tianjin Sci. Technol. 45(6)(2018)69-71.(in Chinese) [157] H.Z. Niu, An industrial production method of electronic grade vinyl fluorocarbonate, China Pat. 106916137,(2017). [158] Y.Q. Weng, W.J. Xie, G.X. Yue, W.X. Xin, X.Z. Chen, A preparation method of high purity vinyl fluorocarbonate, China Pat. 106854195,(2019). [159] X.C. Wang, X.L. Wang, Preparation method and application of fluorinated vinyl carbonate, China Pat. 110981849,(2020). [160] H.J. Hou, Xue, X.J. H.H. Yu, H.X. Liu, T.F. Si, M.X. Yang, F.F. Xue, C.J. Luo, Y.F. Li, H.Q. Liu, Y. Yu, Z.P. Zhang, Preparation method for high purity fluoroethylene carbonate, WO Pat., 184379,(2018). [161] G. Lin, Y.J. Wu, B.P. Wan, X. Wang, H. Yu, C.Y. Wang, J. Hu, A preparation method of fluoroethylene carbonate, China Pat. 112409320,(2020). [162] W.F. Shu, X.F. Jia, M.F. Qiu, X.F. Zhang, H.W. Wang, Y.L. Zhu, A method for preparing electronic grade vinyl fluorocarbonate by fractional crystallization, China Pat. 10878078,(2020). [163] X.B. Jiang, M. Li, G.H. He, J.K. Wang, Research progress and model development of crystal layer growth and impurity distribution in layer melt crystallization:a review, Ind. Eng. Chem. Res. 53(34)(2014)13211-13227. [164] S.Z. Jia, B. Jing, W. Hong, Z.G. Gao, J.B. Gong, J.K. Wang, S. Rohani, Purification of 2, 4-dinitrochlorobenzene using layer melt crystallization:Model and experiment, Sep. Purif. Technol. 270(2021)118806. [165] A.M. Chen, J.W. Zhu, B. Wu, K. Chen, L.J. Ji, Y.Y. Wu, Purification of wet-process phosphoric acid by melt suspension crystallization, Chem. Eng. 40(8)(2012) 52-56. [166] B.W. Montag, M.A. Reichenberger, N. Edwards, P.B. Ugorowski, M. Sunder, J. Weeks, D.S. McGregor, Static sublimation purification process and characterization of LiZnP semiconductor material, J. Cryst. Growth 419 (2015)133-137. [167] V.A. Fedorov, A.A. Gasanov, N.A. Potolokov, T.K. Menshchikova, M.N. Brekhovskikh, Ultrapurification of arsenic by crystallization, Inorg. Mater. 54(10)(2018)1027-1032. [168] V.A. Fedorov, N.A. Potolokov, T.K. Menshchikova, M.N. Brekhovskikh, Physicochemical and methodological approaches to the development of integrated processes for the preparation of high-purity substances, Inorg. Mater. 55(12)(2019)1264-1272. [169] S. Karki, P. Aryal, O. Gileva, H.J. Kim, Y. Kim, D.Y. Lee, H.K. Park, K. Shin, Reduction of radioactive elements in molybdenum trioxide powder by sublimation method and its technical performance, J. Instrum. 14(11)(2019) T11002. [170] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7(2015)19-29. [171] Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang, Xu Xu, L. Mai, Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes, Energ. Environ. Sci. 8(4)(2015)1267-1275. [172] Y.S. Cai, X.X. Cao, Z.G. Luo, G.Z. Fang, F. Liu, J. Zhou, A.Q. Pan, S.Q. Liang, Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling, Adv. Sci.(Weinh.)5(9)(2018) 1800680. [173] Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Sci. Bull. 65 (9)(2020)702-710. |
[1] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[2] | Zeren Shang, Mingchen Li, Baohong Hou, Junli Zhang, Kuo Wang, Weiguo Hu, Tong Deng, Junbo Gong, Songgu Wu. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 430-440. |
[3] | Tiefeng Wang, Jinxiang Dong. Ethylene glycol purification by melt crystallization: Removal of 2-methoxyethanol impurity [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 39-45. |
[4] | Chun Yao, Jiangwei Chang, Yiwang Ding, Chang Yu, Jieshan Qiu. Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 159-167. |
[5] | Cui-Ping Ye, Ya-Fei Qiao, Rui-Nan Wang, Wen-Ying Li. Purification of carbazole by solvent crystallization under two forced cooling modes [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 173-179. |
[6] | Piqiang Tan, Xiaoyu Li, Shiyan Wang, Zhiyuan Hu, Diming Lou. Selective catalytic reduction failure of low NH3-NOx ratio [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 231-240. |
[7] | Xiaosa Xu, Yuqian Qiu, Jianping Wu, Baichuan Ding, Qianhui Liu, Guangshen Jiang, Qiongqiong Lu, Jiangan Wang, Fei Xu, Hongqiang Wang. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 416-422. |
[8] | Tong Zhou, Chunzhao Tu, Ya Sun, Linan Ji, Chuangxian Bian, Xiaohua Lu, Changsong Wang. Determination of the metastable zone and induction time of thiourea for cooling crystallization [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 164-168. |
[9] | Xiaodong Tang, Qiankun Guo, Miaomiao Zhou, Shengwen Zhong. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 278-286. |
[10] | Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 37-50. |
[11] | Jing Gao, Qiang Li, Fuli Liu. Calcium sulfate whisker prepared by flue gas desulfurization gypsum: A physical-chemical coupling production process [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2221-2226. |
[12] | Rongzong Li, Zhaoyang Li, Qian Jiang, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Acid precipitation coupled membrane-dispersion advanced oxidation process (MAOP) to treat crystallization mother liquor of pulp wastewater [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1911-1917. |
[13] | Feiran Sun, Tao Liu, Yi Cao, Xiongwei Ni, Zoltan Kalman Nagy. Kinetic parameter estimation for cooling crystallization process based on cell average technique and automatic differentiation [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1637-1651. |
[14] | Lang Li, Jinsong Sui, Wei Qin. Synthesis of high purity Li2CO3 and MgCO3·3H2O in a homogeneous-like organic phase [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1230-1234. |
[15] | Zhaoyang Li, Rongzong Li, Zhaoxiang Zhong, Ming Zhou, Min Chen, Weihong Xing. Acid precipitation coupled electrodialysis to improve separation of chloride and organics in pulping crystallization mother liquor [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2917-2924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||