Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 323-340.DOI: 10.1016/j.cjche.2023.02.010
Previous Articles Next Articles
Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin
Received:
2022-11-02
Revised:
2023-02-06
Online:
2023-08-31
Published:
2023-06-28
Contact:
Lusheng Zhai,E-mail:lszhai@tju.edu.cn
Supported by:
Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin
通讯作者:
Lusheng Zhai,E-mail:lszhai@tju.edu.cn
基金资助:
Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 323-340.
Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. 中国化学工程学报, 2023, 58(6): 323-340.
[1] K.W. Xu, Y.C. Zhang, D. Liu, A.N. Azman, H.B. Kim, Slug flow development study in a horizontal pipe using particle image velocimetry, Int. J. Heat Mass Transf. 162 (2020) 120267. [2] S. Miao, K. Hendrickson, Y.M. Liu, Slug generation processes in co-current turbulent-gas/laminar-liquid flows in horizontal channels, J. Fluid Mech. 860 (2019) 224-257. [3] J. Leonel Gonçalves, R.A. Mazza, A transient analysis of slug flow in a horizontal pipe using slug tracking model: Void and pressure wave, Int. J. Multiph. Flow 149 (2022) 103972. [4] M. Furuya, T. Kanai, T. Arai, H. Takiguchi, H.M. Prasser, U. Hampel, E. Schleicher, Three-dimensional velocity vector determination algorithm for individual bubble identified with Wire-Mesh Sensors, Nucl. Eng. Des. 336 (2018) 74-79. [5] R.G. Morgan, C.N. Markides, I. Zadrazil, G.F. Hewitt, Characteristics of horizontal liquid-liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry, Int. J. Multiph. Flow 49 (2013) 99-118. [6] S.G. Nnabuife, P. Sharma, E. Iyore Aburime, P.L. Lokidor, A. Bello, Development of gas-liquid slug flow measurement using continuous-wave Doppler ultrasound and bandpass power spectral density, ChemEngineering 5 (1) (2021) 2. [7] C. Tan, Y. Murai, W.L. Liu, Y. Tasaka, F. Dong, Y. Takeda, Ultrasonic Doppler technique for application to multiphase flows: A review, Int. J. Multiph. Flow 144 (2021) 103811. [8] S. Ricci, V. Meacci, B. Birkhofer, J. Wiklund, FPGA-based system for in-line measurement of velocity profiles of fluids in industrial pipe flow, IEEE Trans. Ind. Electron. 64 (5) (2017) 3997-4005. [9] D.W. Baker, Pulsed ultrasonic Doppler blood-flow sensing, IEEE Trans. Sonics Ultrason. 17 (3) (1970) 170-184. [10] Y. Takeda, Velocity profile measurement by ultrasound Doppler shift method, Int. J. Heat Fluid Flow 7 (4) (1986) 313-318. [11] Y. Takeda, Development of an ultrasound velocity profile monitor, Nucl. Eng. Des. 126 (2) (1991) 277-284. [12] Y. Takeda, Velocity profile measurement by ultrasonic Doppler method, Exp. Therm. Fluid Sci. 10 (4) (1995) 444-453. [13] M. Mori, Y. Takeda, T. Taishi, N. Furuichi, M. Aritomi, H. Kikura, Development of a novel flow metering system using ultrasonic velocity profile measurement, Exp. Fluids 32 (2) (2002) 153-160. [14] Y. Takeda, Measurement of velocity profile of mercury flow by ultrasound Doppler shift method, Nucl. Technol. 79 (1) (1987) 120-124. [15] S. Wada, H. Kikura, M. Aritomi, M. Mori, Y. Takeda, Development of pulse ultrasonic Doppler method for flow rate measurement in power plant multilines flow rate measurement on metal pipe, J. Nucl. Sci. Technol. 41 (3) (2004) 339-346. [16] B. Birkhofer, T. Meile, G. De Cesare, S.A.K. Jeelani, E.J. Windhab, Use of gas bubbles for ultrasound Doppler flow velocity profile measurement, Flow Meas. Instrum. 52 (2016) 233-239. [17] M. Aritomi, S.R. Zhou, M. Nakajima, Y. Takeda, M. Mori, Y. Yoshioka, Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit, J. Nucl. Sci. Technol. 33 (12) (1996) 915-923. [18] H. Nakamura, M. Kondo, Y. Kukita, Simultaneous measurement of liquid velocity and interface profiles of horizontal duct wavy flow by ultrasonic velocity profile meter, Nucl. Eng. Des. 184 (2-3) (1998) 339-348. [19] F.C. Liang, Z.J. Fang, J. Chen, S.T. Sun, Investigating the liquid film characteristics of gas-liquid swirling flow using ultrasound Doppler velocimetry, AIChE J. 63 (6) (2017) 2348-2357. [20] B.M. Abbagoni, H. Yeung, L.Y. Lao, Non-invasive measurement of oil-water two-phase flow in vertical pipe using ultrasonic Doppler sensor and gamma ray densitometer, Chem. Eng. Sci. 248 (2022) 117218. [21] L.D. Fang, Y.Y. Liu, S.C. Wang, J.X. Zhao, Y. Faraj, M.Y. Tian, Z.H. Wei, Dual-modality UDV-PIV system for measurement of solid-liquid flow in sewage facilities, Flow Meas. Instrum. 82 (2021) 102063. [22] Y. Ozaki, T. Kawaguchi, Y. Takeda, K. Hishida, M. Maeda, High time resolution ultrasonic velocity profiler, Exp. Therm. Fluid Sci. 26 (2-4) (2002) 253-258. [23] H. Kikura, G. Yamanaka, M. Aritomi, Effect of measurement volume size on turbulent flow measurement using ultrasonic Doppler method, Exp. Fluids 36 (1) (2004) 187-196. [24] H. Murakawa, K. Sugimoto, N. Takenaka, Effects of the number of pulse repetitions and noise on the velocity data from the ultrasonic pulsed Doppler method with different algorithms, Flow Meas. Instrum. 40 (2014) 9-18. [25] H. Murakawa, E. Muramatsu, K. Sugimoto, N. Takenaka, N.Furuichi, A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes, Meas. Sci. Technol. 26 (8) (2015) 085301. [26] S. Wada, N. Furuichi, T. Shimada, Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement, Meas. Sci. Technol. 27 (11) (2016) 115302. [27] E. Muramatsu, H. Murakawa, K. Sugimoto, H. Asano, N. Takenaka, N. Furuichi, Multi-wave ultrasonic Doppler method for measuring high flow-rates using staggered pulse intervals, Meas. Sci. Technol. 27 (2) (2016) 025303. [28] S.G. Nnabuife, K.E.S. Pilario, L.Y. Lao, Y. Cao, M. Shafiee, Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps, Flow Meas. Instrum. 68 (2019) 101568. [29] S.Q. Wang, K.W. Xu, H.B. Kim, Slug flow identification using ultrasound Doppler velocimetry, Int. J. Heat Mass Transf. 148 (2020) 119004. [30] S. Godfrey Nnabuife, B.Y. Kuang, J.F. Whidborne, Z. Rana, Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks, Chem. Eng. J. 403 (2021) 126401. [31] W.L. Liu, C. Tan, F. Dong, Doppler spectrum analysis and flow pattern identification of oil-water two-phase flow using dual-modality sensor, Flow Meas. Instrum. 77 (2021) 101861. [32] H. Obayashi, Y. Tasaka, S. Kon, Y. Takeda, Velocity vector profile measurement using multiple ultrasonic transducers, Flow Meas. Instrum. 19 (3-4) (2008) 189-195. [33] S. Shwin, A. Hamdani, H. Takahashi, H. Kikura, Two-dimensional velocity measurement downstream of the double bend pipe using phased array ultrasonic velocity profiler, Adv. Exp. Mech. 3 (2018) 111-117. [34] N. Tiwari, Y. Murai, Ultrasonic velocity profiler applied to explore viscosity-pressure fields and their coupling in inelastic shear-thinning vortex streets, Exp. Fluids 62 (9) (2021) 185. [35] N. Tiwari, Y. Tasaka, Y. Murai, Pressure field estimation from ultrasound Doppler velocity profiler for vortex-shedding flows, Flow Meas. Instrum. 67 (2019) 23-32. [36] J. Hitomi, S. Nomura, Y. Murai, G. De Cesare, Y. Tasaka, Y. Takeda, H.J. Park, H. Sakaguchi, Measurement of the inner structure of turbidity currents by ultrasound velocity profiling, Int. J. Multiph. Flow 136 (2021) 103540. [37] D. Yoon, H.J. Park, T. Ihara, Development of an instantaneous velocity-vector-profile method using conventional ultrasonic transducers, Meas. Sci. Technol. 33 (3) (2022) 035301. [38] H. Murakawa, H. Kikura, M. Aritomi, Application of ultrasonic Doppler method for bubbly flow measurement using two ultrasonic frequencies, Exp. Therm. Fluid Sci. 29 (7) (2005) 843-850. [39] H. Murakawa, H. Kikura, M. Aritomi, Application of ultrasonic multi-wave method for two-phase bubbly and slug flows, Flow Meas. Instrum. 19 (3-4) (2008) 205-213. [40] T.T. Nguyen, H. Kikura, H. Murakawa, N. Tsuzuki, Measurement of bubbly two-phase flow in vertical pipe using multiwave ultrasonic pulsed Dopller method and wire mesh tomography, Energy Procedia 71 (2015) 337-351. [41] W. Wongsaroj, A. Hamdani, N. Thong-un, H. Takahashi, H. Kikura, Extended short-time Fourier transform for ultrasonic velocity profiler on two-phase bubbly flow using a single resonant frequency, Appl. Sci. 9 (1) (2018) 50. [42] X.W. Shi, C. Tan, F. Dong, J. Escudero, Flow rate measurement of oil-gas-water wavy flow through a combined electrical and ultrasonic sensor, Chem. Eng. J. 427 (2022) 131982. [43] L.S. Zhai, H.Y. Xia, Y.L. Wu, N.D. Jin, Gas holdup measurement of horizontal gas-liquid two-phase flows by using a novel combined ultrasonic-conductance sensor, IEEE Sens. J. 21 (24) (2021) 27590-27600. [44] L.S. Zhai, H.Y. Xia, H.L. Xie, J. Yang, Structure detection of horizontal gas-liquid slug flow using ultrasonic transducer and conductance sensor, IEEE Trans. Instrum. Meas. 70 (2021) 1-10. [45] O. Dinaryanto, Y.A.K. Prayitno, A.I. Majid, A.Z. Hudaya, Y.A. Nusirwan, A. Widyaparaga, Indarto, Deendarlianto, Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe, Exp. Therm. Fluid Sci. 81 (2017) 93-108. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[3] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[4] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[5] | Vesna Krsti?. Theoretical and experimental assessment of a novel method to establish the complete measurement range of the calorimeter and its limit of detection and quantification [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 466-473. |
[6] | Teng Wang, Miao Gui, Jinle Zhao, Qincheng Bi, Tao Zhang. Void fraction measurement and calculation model of vertical upward co-current air–water slug flow [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 178-198. |
[7] | Hongliang Qian, Hongzhou Tian, Guoqiang Yang, Gaodong Yang, Lei Li, Feng Zhang, Zheng Zhou, Weihua Huang, Yufu Chen, Zhibing Zhang. Microinterface intensification in hydrogenation and air oxidation processes [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 292-300. |
[8] | Jingying Xu, Yue Lyu, Jiankun Zhuo, Yishu Xu, Zijian Zhou, Qiang Yao. Formation and emission characteristics of VOCs from a coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 256-264. |
[9] | Zhuo Chen, Qiqiang Xiong, Shaowei Li, Yundong Wang, Jianhong Xu. Experimental investigation of dynamic mass transfer during droplet formation using micro-LIF in a coaxial microchannel [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 51-58. |
[10] | Hualing Duan, Kun Zhu, Houfang Lu, Changjun Liu, Kejing Wu, Yingying Liu, Bin Liang. CO2 absorption performance in a rotating disk reactor using DBU-glycerol as solvent [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 104-113. |
[11] | Sheshan Bhimrao Meshram, Omkar S Kushwaha, Palle Ravinder Reddy, Gaurav Bhattacharjee, Rajnish Kumar. Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2148-2156. |
[12] | Yumeng Zhang, Yudan Zhu, Anran Wang, Qingwei Gao, Yao Qin, Yaojia Chen, Xiaohua Lu. Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1403-1415. |
[13] | Yangyang Liang, Zhengming Gao, Dai'en Shi, Haotian Li, Yuyun Bao, Ziqi Cai. Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas-liquid stirred vessel [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 781-793. |
[14] | Tibor Poós, Viktor Szabó. Desorption isotherms and isosteric heat of anaerobic fermentation residues [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2510-2517. |
[15] | Hong Wang, Xin Wei, Yujun Zhang, Ronghua Ma, Zhen Yin, Jianxin Li. Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnOx/Ti membrane electrode for alcohol oxidation [J]. Chin.J.Chem.Eng., 2019, 27(1): 150-156. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||