[1] S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data 49 (4) (2004) 1095-1101 [2] M.C. Campo, A.M. Ribeiro, A.F.P. Ferreira, J.C. Santos, C. Lutz, J.M. Loureiro, A.E. Rodrigues, Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite, Fuel Process. Technol. 143 (2016) 185-194 [3] S. Oddy, J. Poupore, F.H. Tezel, Separation of CO2and CH4on CaX zeolite for use in Landfill gas separation, Can. J. Chem. Eng. 91 (6) (2013) 1031-1039 [4] A. Kapoor, R.T. Yang, Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon, Chem. Eng. Sci. 44 (8) (1989) 1723-1733 [5] S. Cavenati, C.A. Grande, A.E. Rodrigues, Layered pressure swing adsorption for methane recovery from CH4/CO2/N2 streams, Adsorption 11 (1) (2005) 549-554 [6] F. Gholipour, M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X:Experimental and thermodynamic modeling, J. Supercrit. Fluids 111 (2016) 47-54 [7] Yu, C.H., Huang, C.H. and Tan, C.S., 2012. A review of CO2 capture by absorption and adsorption.Aerosol Air Qual. Res,12(5), pp.745-769 [8] Y.S. Bae, R.Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture, Angew Chem Int Ed Engl 50 (49) (2011) 11586-11596 [9] M.B. Kim, Y.S. Bae, D.K. Choi, C.H. Lee, Kinetic separation of landfill gas by a two-bed pressure swing adsorption process packed with carbon molecular sieve:Nonisothermal operation, Ind. Eng. Chem. Res. 45 (14) (2006) 5050-5058 [10] H.H. Lee, H.J. Kim, Y. Shi, D. Keffer, C.H. Lee, Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions, Chem. Eng. J. 230 (2013) 93-101 [11] T. Montanari, E. Finocchio, I. Bozzano, G. Garuti, A. Giordano, C. Pistarino, G. Busca, Purification of landfill biogases from siloxanes by adsorption:A study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation, Chem. Eng. J. 165 (3) (2010) 859-863 [12] R.A. van Santen, G.J. Kramer, Reactivity theory of zeolitic broensted acidic sites, Chem. Rev. 95 (3) (1995) 637-660 [13] A. Zecchina, C.O. Areán, Diatomic molecular probes for mid-IR studies of zeolites, Chem. Soc. Rev. 25 (3) (1996) 187-197 [14] A. Arefi Pour, S. Sharifnia, R. NeishaboriSalehi, M. Ghodrati, Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture, J. Nat. Gas Sci. Eng. 26 (2015) 1246-1253 [15] J.C. Liu, S. Keskin, D.S. Sholl, J.K. Johnson, Molecular simulations and theoretical predictions for adsorption and diffusion of CH4/H2 and CO2/CH4 mixtures in ZIFs, J. Phys. Chem. C 115 (25) (2011) 12560-12566 [16] L.J. Dunne, A. Furgani, S. Jalili, G. Manos, Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model, Chem. Phys. 359 (1-3) (2009) 27-30 [17] J.F. Zhang, N. Burke, S.C. Zhang, K.Y. Liu, M. Pervukhina, Thermodynamic analysis of molecular simulations of CO2 and CH4 adsorption in FAU zeolites, Chem. Eng. Sci. 113 (2014) 54-61 [18] E. Garcia-Perez, J.B. Parra, C.O. Ania, A. Garcia-Sanchez, J.M. van Baten, R. Krishna, D. Dubbeldam, S. Calero, A computational study of CO2, N2, and CH4 adsorption in zeolites, Adsorption 13 (5) (2007) 469-476 [19] S.E. Jee, D.S. Sholl, Carbon dioxide and methane transport in DDR zeolite:Insights from molecular simulations into carbon dioxide separations in small pore zeolites, J Am Chem Soc 131 (22) (2009) 7896-7904 [20] J.F. Zhang, N. Burke, Y.X. Yang, Molecular simulation of propane adsorption in FAU zeolites, J. Phys. Chem. C 116 (17) (2012) 9666-9674 [21] E. García-Pérez, D. Dubbeldam, T.L. Maesen, S. Calero, Influence of cation Na/Ca ratio on adsorption in LTA 5A:A systematic molecular simulation study of alkane chain length, J Phys Chem B 110 (47) (2006) 23968-23976 [22] D. Dubbeldam, B. Smit, Computer simulation of incommensurate diffusion in zeolites:Understanding window effects, J. Phys. Chem. B 107 (44) (2003) 12138-12152 [23] M.D. Macedonia, D.D. Moore, E.J. Maginn, M.M. Olken, Adsorption studies of methane, ethane, and argon in the zeolite mordenite:Molecular simulations and experiments, Langmuir 16 (8) (2000) 3823-3834 [24] M. Göktuğ Ahunbay, O. Karvan, A. Erdem-Şenatalar, MTBE adsorption and diffusion in silicalite-1, Microporous Mesoporous Mater. 115 (1-2) (2008) 93-97 [25] M.J. Purdue, Z.W. Qiao, Molecular simulation study of wet flue gas adsorption on zeolite 13X, Microporous Mesoporous Mater. 261 (2018) 181-197 [26] A.I. Skoulidas, D.S. Sholl, J.K. Johnson, Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes, J Chem Phys 124 (5) (2006) 054708 [27] L. Jafari, H. Moradi, Y. Tavan, A theoretical and industrial study of component co-adsorption on 3A zeolite:An industrial case, Chem. Pap. 74 (2) (2020) 651-661 [28] F. Manon Higgins, N.H. de Leeuw, S.C. Parker, Modelling the effect of water on cation exchange in zeolite A, J. Mater. Chem. 12 (1) (2002) 124-131 [29] M. Khalkhali, A. Ghorbani, B. Bayati, Study of adsorption and diffusion of methyl mercaptan and methane on FAU zeolite using molecular simulation, Polyhedron 171 (2019) 403-410 [30] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Structure and energetics of ligand binding to proteins:Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins 4 (1) (1988) 31-47 [31] A.E.O. Lima, U.F.D.C. Brasil, V.A.M. Gomes, S.M.P. Lucena, Theoretical study of CO2:N2 adsorption in faujasite impregnated with monoethanolamine, Braz. J. Chem. Eng. 32 (3) (2015) 663-669 [32] Allen, M.P. and Tildesley, D.J., 1989. Computer simulation of liquids. 1987.New York:Oxford,385 [33] M. Rahmati, H. Modarress, Selectivity of new siliceous zeolites for separation of methane and carbon dioxide by Monte Carlo simulation, Microporous Mesoporous Mater. 176 (2013) 168-177 [34] S. Agnihotri, P. Kim, Y.J. Zheng, J.P. Mota, L.C. Yang, Regioselective competitive adsorption of water and organic vapor mixtures on pristine single-walled carbon nanotube bundles, Langmuir 24 (11) (2008) 5746-5754 [35] M.M. Biswas, T. Cagin, Simulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffold, J Phys Chem B 114 (43) (2010) 13752-13763 [36] Y. Park, Y. Ju, D. Park, C.H. Lee, Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa:CO2, CO, N2, CH4, Ar and H2, Chem. Eng. J. 292 (2016) 348-365 [37] A. Nilchi, R. Saberi, H. Azizpour, M. Moradi, R. Zarghami, M. Naushad, Adsorption of caesium from aqueous solution using cerium molybdate-pan composite, Chem. Ecol. 28 (2) (2012) 169-185 [38] G. Maurin, P.L. Llewellyn, R.G. Bell, Adsorption mechanism of carbon dioxide in faujasites:Grand canonical Monte Carlo simulations and microcalorimetry measurements, J Phys Chem B 109 (33) (2005) 16084-16091 [39] C.Y. Wang, L. Boithias, Z.G. Ning, Y.P. Han, S. Sauvage, J.M. Sánchez-Pérez, K. Kuramochi, R. Hatano, Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale, Agric. Water Manag. 180 (2017) 205-211 [40] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (1) (2010) 2-10 [41] Toth, J., 1971. State equation of the solid-gas interface layers.Acta chim. hung.,69, pp.311-328 [42] X.Y. Hu, E. Mangano, D. Friedrich, H. Ahn, S. Brandani, Diffusion mechanism of CO2 in 13X zeolite beads, Adsorption 20 (1) (2014) 121-135 [43] H. Ahn, J.H. Moon, S.H. Hyun, C.H. Lee, Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets, Adsorption 10 (2) (2004) 111-128 [44] J.A.C. Silva, K. Schumann, A.E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous Mesoporous Mater. 158 (2012) 219-228 |