Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 62-69.DOI: 10.1016/j.cjche.2021.11.018
Previous Articles Next Articles
Bo Wu1,2, Xing Yu1,2, Min Huang1,3, Liangshu Zhong1,3, Yuhan Sun1,3
Received:
2021-08-23
Revised:
2021-10-23
Online:
2022-04-28
Published:
2022-03-28
Contact:
Liangshu Zhong,E-mail:zhongls@sari.ac.cn;Yuhan Sun,E-mail:sunyh@sari.ac.cn
Supported by:
Bo Wu1,2, Xing Yu1,2, Min Huang1,3, Liangshu Zhong1,3, Yuhan Sun1,3
通讯作者:
Liangshu Zhong,E-mail:zhongls@sari.ac.cn;Yuhan Sun,E-mail:sunyh@sari.ac.cn
基金资助:
Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69.
Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. 中国化学工程学报, 2022, 43(3): 62-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.018
[1] Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat Chem 9 (10) (2017) 1019-1024. https://www.ncbi.nlm.nih.gov/pubmed/28937667/ [2] J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide:an integrated review of catalysis and life cycle assessment, Chem. Rev. 118 (2) (2018) 434-504. Doi:10.1021/acs.chemrev.7b00435 [3] X. Ye, C.Y. Yang, X.L. Pan, J.G. Ma, Y.R. Zhang, Y.J. Ren, X.Y. Liu, L. Li, Y.Q. Huang, Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst, J. Am. Chem. Soc. 142 (45) (2020) 19001-19005. Doi:10.1021/jacs.0c08607 [4] S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes, C.A. Grimes, J.W. Jung, C.H. Cho, T. Majima, M.R. Hoffmann, S.I. In, CO2, water, and sunlight to hydrocarbon fuels:a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%, Energy Environ. Sci. 12 (9) (2019) 2685-2696. Doi:10.1039/C9EE00734B [5] A. Álvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes, Chem. Rev. 117 (14) (2017) 9804-9838. Doi:10.1021/acs.chemrev.6b00816 [6] Q.Y. Wang, S. Santos, C.A. Urbina-Blanco, W.Y. Hernández, M. Impéror-Clerc, E.I. Vovk, M. Marinova, O. Ersen, W. Baaziz, O.V. Safonova, A.Y. Khodakov, M. Saeys, V.V. Ordomsky, Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid, Appl. Catal. B:Environ. 290 (2021) 120036. Doi:10.1016/j.apcatb.2021.120036 [7] H. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu, H. Kawanami, Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts, Adv. Sustainable Syst. 2 (2) (2018) 1700161. Doi:10.1002/adsu.201700161 [8] R.Y. Sun, Y.H. Liao, S.T. Bai, M.Y. Zheng, C. Zhou, T. Zhang, B.F. Sels, Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate:from nanoscale to single atom, Energy Environ. Sci. 14 (3) (2021) 1247-1285. Doi:10.1039/d0ee03575k [9] L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts:from nanoparticles to single atoms, Chem. Rev. 120 (2) (2020) 683-733. Doi:10.1021/acs.chemrev.9b00230 [10].Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Y.Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Optimizing reaction paths for methanol synthesis from CO Optimizing reaction paths for methanol synthesis from CO 2 hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885.https://www.nature.com/articles/s41467-019-09918-z hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885 [11] K.W. Ting, T. Toyao, S.M.A.H. Siddiki, K.I. Shimizu, Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts, ACS Catal. 9 (4) (2019) 3685-3693. Doi:10.1021/acscatal.8b04821 [12] K. Mori, T. Taga, H. Yamashita, Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid, ACS Catal. 7 (5) (2017) 3147-3151. Doi:10.1021/acscatal.7b00312 [13] N.H.M. Dostagir, R. Rattanawan, M. Gao, J. Ota, J.Y. Hasegawa, K. Asakura, A. Fukouka, A. Shrotri, Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO, ACS Catal. 11 (15) (2021) 9450-9461. Doi:10.1021/acscatal.1c02041 [14] Y.F. Zhu, S.F. Yuk, J. Zheng, M.T. Nguyen, M.S. Lee, J. Szanyi, L. Kovarik, Z.H. Zhu, M. Balasubramanian, V.A. Glezakou, J.L. Fulton, J.A. Lercher, R. Rousseau, O.Y. Gutiérrez, Environment of metal-O-Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles, J. Am. Chem. Soc. 143 (14) (2021) 5540-5549. Doi:10.1021/jacs.1c02276 [15] Wu B, Yang R, Shi L, Lin T, Yu X, Huang M, Gong K, Sun F, Jiang Z, Li S, Zhong L, Sun Y, Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates, Chem Commun (Camb) 56 (93) (2020) 14677-14680.https://www.ncbi.nlm.nih.gov/pubmed/33165467/ [16] Z. Hu, X.F. Liu, D.M. Meng, Y. Guo, Y.L. Guo, G.Z. Lu, Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation, ACS Catal. 6 (4) (2016) 2265-2279. Doi:10.1021/acscatal.5b02617 [17] R.S. Peng, X.B. Sun, S.J. Li, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene, Chem. Eng. J. 306 (2016) 1234-1246. Doi:10.1016/j.cej.2016.08.056 [18] Q. Lin, K.I. Shimizu, A. Satsuma, Kinetic analysis of reduction process of supported Rh/Al2O3 catalysts by time resolved in situ UV-vis spectroscopy, Appl. Catal. A:Gen. 419-420 (2012) 142-147. Doi:10.1016/j.apcata.2012.01.021 [19] Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int. 39 (6) (2013) 6607-6610. Doi:10.1016/j.ceramint.2013.01.096 [20] G. Spezzati, Y. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation, ACS Catal. 7 (2017) 6887-6891 [21] G. Spezzati, A.D. Benavidez, A.T. DeLaRiva, Y. Su, J.P. Hofmann, S. Asahina, E.J. Olivier, J.H. Neethling, J.T. Miller, A.K. Datye, E.J.M. Hensen, CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets, Appl. Catal. B 243 (2019) 36-46 [22] Z. Li, Y. Feng, Y.L. Liang, C.Q. Cheng, C.K. Dong, H. Liu, X.W. Du, Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction, Adv. Mater. 32 (25) (2020) 1908521. Doi:10.1002/adma.201908521 [23] Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts, Nature 551 (7682) (2017) 605-608.https://www.ncbi.nlm.nih.gov/pubmed/29189776/ [24] Kwon Y, Kim TY, Kwon G, Yi J, Lee H, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J Am Chem Soc 139 (48) (2017) 17694-17699.https://www.ncbi.nlm.nih.gov/pubmed/29125746/ [25] T.B. Li, F. Chen, R. Lang, H. Wang, Y. Su, B.T. Qiao, A.Q. Wang, T. Zhang, Styrene hydroformylation with in situ hydrogen:regioselectivity control by coupling with the low-temperature water-gas shift reaction, Angew. Chem. Int. Ed. 59 (19) (2020) 7430-7434. Doi:10.1002/anie.202000998 [26] J. Scalbert, F.C. Meunier, C. Daniel, Y. Schuurman, An operando DRIFTS investigation into the resistance against CO2poisoning of a Rh/alumina catalyst during toluenehydrogenation, Phys. Chem. Chem. Phys. 14 (7) (2012) 2159-2163. Doi:10.1039/c1cp22620g [27] L.B. Wang, W.B. Zhang, S.P. Wang, Z.H. Gao, Z.H. Luo, X. Wang, R. Zeng, A.W. Li, H.L. Li, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, C. Ma, R. Si, J. Zeng, Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst, Nat. Commun. 7 (1) (2016) 1-8. Doi:10.1038/ncomms14036 [28] B. Wu, T.J. Lin, R.O. Yang, M. Huang, H. Zhang, J. Li, F.F. Sun, F. Song, Z. Jiang, L.S. Zhong, Y.H. Sun, Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene, Green Chem. 23 (13) (2021) 4753-4761. Doi:10.1039/d1gc01439k [29] N. Rui, Z.Y. Wang, K.H. Sun, J.Y. Ye, Q.F. Ge, C.J. Liu, CO2 hydrogenation to methanol over Pd/In2O3:effects of Pd and oxygen vacancy, Appl. Catal. B:Environ. 218 (2017) 488-497. Doi:10.1016/j.apcatb.2017.06.069 [30] B.B. Chen, C. Shi, M. Crocker, Y. Wang, A.M. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Appl. Catal. B:Environ. 132-133 (2013) 245-255. Doi:10.1016/j.apcatb.2012.11.028 [31] D. Luo, B.B. Chen, X.Y. Li, Z.J. Liu, X.W. Liu, X.H. Liu, C. Shi, X.S. Zhao, Three-dimensional nitrogen-doped porous carbon anchored CeO2 quantum dots as an efficient catalyst for formaldehyde oxidation, J. Mater. Chem. A 6 (17) (2018) 7897-7902. Doi:10.1039/c8ta00076j [32] X. Li, T.T. Qin, L.S. Li, B. Wu, T.J. Lin, L.S. Zhong, One-pot synthesis of acetals by tandem hydroformylation-acetalization of olefins using heterogeneous supported catalysts, Catal. Lett. 151 (9) (2021) 2638-2646. Doi:10.1007/s10562-020-03504-5 [33] D. Yang, W. Pei, S. Zhou, J.J. Zhao, W.P. Ding, Y. Zhu, Controllable conversion of CO2on non-metallic gold clusters, Angew. Chem. Int. Ed. 59 (5) (2020) 1919-1924. Doi:10.1002/anie.201913635 [34] J.H. Lee, J. Ryu, J.Y. Kim, S.W. Nam, J.H. Han, T.H. Lim, S. Gautam, K.H. Chae, C.W. Yoon, Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride, J. Mater. Chem. A 2 (25) (2014) 9490. Doi:10.1039/c4ta01133c [35] P.H. Pandey, H.S. Pawar, Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid, J. CO2 Util. 41 (2020) 101267. Doi:10.1016/j.jcou.2020.101267 [36] C.E. Mitchell, U. Terranova, I. Alshibane, D.J. Morgan, T.E. Davies, Q. He, J.S.J. Hargreaves, M. Sankar, N.H. de Leeuw, Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide, New J. Chem. 43 (35) (2019) 13985-13997. Doi:10.1039/c9nj02114k [37] Y. Kuwahara, Y. Fujie, H. Yamashita, Poly(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid, ChemCatChem 9 (11) (2017) 1906-1914. Doi:10.1002/cctc.201700508 [38] K.M.K. Yu, C.M.Y. Yeung, S.C. Tsang, Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nanocatalyst, J. Am. Chem. Soc. 129 (20) (2007) 6360-6361. Doi:10.1021/ja0706302 [39] Z.H. Zhang, L.Y. Zhang, S.Y. Yao, X.Z. Song, W.X. Huang, M.J. Hülsey, N. Yan, Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts, J. Catal. 376 (2019) 57-67. Doi:10.1016/j.jcat.2019.06.048 [40] S. Masuda, K. Mori, Y. Futamura, H. Yamashita, PdAg nanoparticles supported on functionalized mesoporous carbon:promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2, ACS Catal. 8 (3) (2018) 2277-2285. Doi:10.1021/acscatal.7b04099 [41] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B:Environ. 265 (2020) 118538. Doi:10.1016/j.apcatb.2019.118538 [42] F. Wang, S. He, H. Chen, B. Wang, L.R. Zheng, M. Wei, D.G. Evans, X. Duan, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc. 138 (19) (2016) 6298-6305. Doi:10.1021/jacs.6b02762 [43] Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu, C.H. Yan, Y.W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect, ACS Catal. 8 (7) (2018) 6203-6215. Doi:10.1021/acscatal.7b04469 |
[1] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[2] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[3] | Chen Chen, Yujie Liu, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Tribological and rheological performance of lithium grease with poly-α-olefin and alkyl-tetralin as base oils [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 180-192. |
[4] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[5] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[6] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
[7] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[8] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 240-247. |
[9] | Xiaodong Yang, Na Yang, Ziqiang Gong, Feifei Peng, Bin Jiang, Yongli Sun, Luhong Zhang. The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 296-305. |
[10] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[11] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154. |
[12] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 161-169. |
[13] | Hao Zhang, Daiwei Liu, Jiangbo Wen, Guangyu Sun, Chuanxian Li, Xinya Chen, Huihui Zhang, Ze Duan. Co-adsorption behaviors of asphaltenes and different flow improvers and their impacts on the interfacial viscoelasticity [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 149-157. |
[14] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
[15] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||