Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 20-28.DOI: 10.1016/j.cjche.2021.05.009
Previous Articles Next Articles
Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin
Received:
2020-12-10
Revised:
2021-05-14
Online:
2022-06-18
Published:
2022-04-28
Contact:
Xu Zhang,E-mail:zhangx@hfut.edu.cn;Guanping Jin,E-mail:zhangx@hfut.edu.cn
Supported by:
Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin
通讯作者:
Xu Zhang,E-mail:zhangx@hfut.edu.cn;Guanping Jin,E-mail:zhangx@hfut.edu.cn
基金资助:
Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28.
Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process[J]. 中国化学工程学报, 2022, 44(4): 20-28.
[1] H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks, Appl. Energy 110 (2013) 252-266 [2] A. Väyrynen, J. Salminen, Lithium ion battery production, J. Chem. Thermodyn. 46 (2012) 80-85 [3] A.M. Bradshaw, T. Hamacher, U. Fischer, Is nuclear fusion a sustainable energy form? Fusion Eng. Des. 86 (9-11) (2011) 2770-2773 [4] A. Ebensperger, P. Maxwell, C. Moscoso, The lithium industry:Its recent evolution and future prospects, Resour. Policy 30 (3) (2005) 218-231 [5] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104 (10) (2004) 4271-4301 [6] B. Swain, Recovery and recycling of lithium:A review, Sep. Purif. Technol. 172 (2017) 388-403 [7] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4, Ind. Eng. Chem. Res. 40 (9) (2001) 2054-2058 [8] S.H. Mohr, G.M. Mudd, D. Giurco, Lithium resources and production:Critical assessment and global projections, Minerals 2 (1) (2012) 65-84 [9] C.W. Kamienski, D.P. Mcdonald, M.W. Stark, J.R. Papcun, Lithium and Lithium Compounds John Wiley & Sons, Inc., New York, (2005) 120-153 [10] S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources:Relative importance of pegmatite, brine and other deposits, Ore Geol. Rev. 48 (2012) 55-69 [11] T. Ryu, D.H. Lee, J.C. Ryu, J. Shin, K.S. Chung, Y.H. Kim, Lithium recovery system using electrostatic field assistance, Hydrometallurgy 151 (2015) 78-83 [12] G.F. Han, D.L. Gu, G. Lin, Q. Cui, H.Y. Wang, Recovery of lithium from a synthetic solution using spodumene leach residue, Hydrometallurgy 177 (2018) 109-115 [13] H.J. Hong, T. Ryu, I.S. Park, M. Kim, J. Shin, B.G. Kim, K.S. Chung, Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater, Chem. Eng. J. 337 (2018) 455-461 [14] T. Ryu, A. Rengaraj, Y. Haldorai, J. Shin, S.R. Choe, G.W. Lee, S.K. Hwang, Y.K. Han, B.G. Kim, Y.S. Huh, K.S. Chung, Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater, Solid State Ionics 308 (2017) 77-83 [15] T. Chen, G.P. Jin, G.J. Meng, X.Y. Lv, Y.X. Yu, C.N. Chen, Recovery of cesium using NiHCF/NiAl-LDHs/CCFs composite by two-stage membrane-free ESIX process, J. Environ. Chem. Eng. 7 (1) (2019) 102799 [16] J.Y. Su, G.P. Jin, T. Chen, X.D. Liu, C.N. Chen, J.J.Tian, The characterization and application of Prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium, Electrochim. Acta 230 (2017) 399-406 [17] Q. Wang, X. Du, F.F. Gao, F.F. Liu, M.M. Liu, X.G. Hao, K.Y. Tang, G.Q. Guan, A. Abudula, A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration, Sep. Purif. Technol. 226 (2019) 59-67 [18] C.P. Lawagon, G.M. Nisola, J. Mun, A. Tron, R.E.C. Torrejos, J.G. Seo, H. Kim, W.J. Chung, Adsorptive Li+ mining from liquid resources by H2TiO3:Equilibrium, kinetics, thermodynamics, and mechanisms, J. Ind. Eng. Chem. 35 (2016) 347-356 [19] X.C. Shi, D.F. Zhou, Z.B. Zhang, L.L. Yu, H. Xu, B.Z. Chen, X.Y. Yang, Synthesis and properties of Li1.6Mn1.6O4, and its adsorption application, Hydrometallurgy 110 (1-4) (2011) 99-106 [20] J.L. Xiao, X.Y. Nie, S.Y. Sun, X.F. Song, P. Li, J.G. Yu, Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv. Powder Technol. 26 (2) (2015) 589-594 [21] T. Ryu, J. Shin, S.M. Ghoreishian, K.S. Chung, Y.S. Huh, Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite, Hydrometallurgy 184 (2019) 22-28 [22] H.J. Hong, I.S. Park, T. Ryu, J. Ryu, B.G. Kim, K.S. Chung, Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater, Chem. Eng. J. 234 (2013) 16-22 [23] J.L. Xiao, S.Y. Sun, X.F. Song, P. Li, J.G. Yu, Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve, Chem. Eng. J. 279 (2015) 659-666 [24] G.P. Xiao, K.F. Tong, L.S. Zhou, J.L. Xiao, S.Y. Sun, P. Li, J.G. Yu, Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve, Ind. Eng. Chem. Res. 51 (33) (2012) 10921-10929 [25] M.J. Park, G.M. Nisola, A.B. Beltran, R.E.C. Torrejos, J.G. Seo, S.P. Lee, H. Kim, W.J. Chung, Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate, Chem. Eng. J. 254 (2014) 73-81 [26] K.S. Chung, J.C. Lee, W.K. Kim, S.B. Kim, K.Y. Cho, Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater, J. Membr. Sci. 325 (2) (2008) 503-508 [27] G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim, W.J. Chung, Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation, Chem. Eng. J. 280 (2015) 536-548 [28] Y. Han, H. Kim, J. Park, Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater, Chem. Eng. J. 210 (2012) 482-489 [29] A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane, K. Ooi, Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater, Ind. Eng. Chem. Res. 41 (17) (2002) 4281-4287 [30] J.F. Shen, B. Yan, T. Li, Y. Long, N. Li, M.X. Ye, Study on graphene-oxide-based polyacrylamide composite hydrogels, Compos. Part A:Appl. Sci. Manuf. 43 (9) (2012) 1476-1481 [31] R.Q. Liu, S.M. Liang, X.Z. Tang, D. Yan, X.F. Li, Z.Z. Yu, Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels, J. Mater. Chem. 22 (28) (2012) 14160 [32] H. Bai, C. Li, X.L. Wang, G.Q. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun. 46 (14) (2010) 2376 [33] J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon 56 (2013) 173-182 [34] Y. Wang, W.H. Lai, N. Wang, Z. Jiang, X. Wang, P.C. Zou, Z.Y. Lin, H.J. Fan, F.Y. Kang, C.P. Wong, C. Yang, A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life, Energy Environ. Sci. 10 (4) (2017) 941-949 [35] Y.J. Hao, Q.Y. Lai, D.Q. Liu, Z.U. Xu, X.Y. Ji, Synthesis by citric acid Sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery, Mater. Chem. Phys. 94 (2-3) (2005) 382-387 [36] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (6) (1958) 1339 [37] H. Jo, M. Sim, S. Kim, S.M. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation, Acta Biomater. 48 (2017) 100-109 [38] A.K. Vipin, B.Y. Hu, B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water, J. Hazard Mater. 258-259 (2013) 93-101 [39] L.W. Ma, B.Z. Chen, X.C. Shi, W. Zhang, K. Zhang, Stability and Li+ extraction/adsorption properties of LiMxMn2-xO4 (M=Ni, Al,Ti; 0 ≤ x ≤ 1) in aqueous solution, Colloids Surf. A 369 (2010) 88-94 [40] C.M. Julien, K. Zaghib, Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (Me=Mn, Ti) spinels, Electrochim. Acta 50 (2-3) (2004) 411-416 [41] M.L.P. Le, P. Strobel, C.V. Colin, T. Pagnier, F. Alloin, Spinel-type solid solutions involving Mn4+ and Ti4+:Crystal chemistry, magnetic and electrochemical properties, J. Phys. Chem. Solids 72 (2) (2011) 124-135 [42] Y.J. Hao, Q.Y. Lai, X.Y. Xu, L. Wang, Electrochemical performance of symmetric supercapacitor based on Li4Mn5O12 electrode in Li2SO4 electrolyte, Mater. Chem. Phys. 126 (1-2) (2011) 432-436 [43] W. Branford, M.A. Green, D.A. Neumann, ChemInformabstract:Structure and ferromagnetism in Mn4+ spinels:AM0.5Mn1.5O4 (A:Li, Cu; M:Ni, Mg), Chem. Mater. 14(4)(2002)1649-1656 [44] L.W. Ma, Z.R. Nie, X.L. Xi, L.Y. Zhao, B.Z. Chen, Lithium ion-sieve:Characterization and Li+ adsorption in ammonia buffer system, J. Environ. Chem. Eng. 5 (1) (2017) 995-1003 [45] Y.J. Hao, Y.Y. Wang, Q.Y. Lai, Y. Zhao, L.M. Chen, X.Y. Ji, Study of capacitive properties for LT-Li4Mn5O12 in hybrid supercapacitor, J. Solid State Electrochem. 13 (6) (2009) 905-912 [46] R.J. Su, C.S. Dai, Synthesis and electrochemical behavior of Mg, F dual substitutions spinel LiMg0.1Mn1.9O3.95F0.05, RareMet. Mater. Eng. (2007) 36(S3)182-187. (in Chinese) [47] Q.H. Wu, J.M. Xu, Q.C. Zhuang, S.G. Sun, X-ray photoelectron spectroscopy of LiM0.05Mn1.95O4 (M=Ni, Fe and Ti), Solid State Ionics 177 (17-18) (2006) 1483-1488 [48] S.L. Wang, S.L. Zheng, Z.M. Wang, W.W. Cui, H.L. Zhang, L.R. Yang, Y. Zhang, P. Li, Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves, Chem. Eng. J. 332 (2018) 160-168 [49] L.Y. Tian, W. Ma, M. Han, Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide, Chem. Eng. J. 156 (1) (2010) 134-140 [50] L. Wang, C.G. Meng, M. Han, W. Ma, Lithium uptake in fixed-pH solution by ion sieves, J. Colloid Interface Sci. 325(1) (2008) 31-40 |
[1] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[2] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 240-247. |
[3] | Yufei Wang, Zihao Chen, Rui Chen, Jie Wei. A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 73-82. |
[4] | Hui Dang, Zhidong Chang, Xue Wu, Sihang Ma, Yifei Zhan, Na Li, Wenbo Liu, Wenjun Li, Hualei Zhou, Changyan Sun. Na2SO4–NaCl binary eutectic salt roasting to enhance extraction of lithium from pyrometallurgical slag of spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 294-300. |
[5] | Dan Zeng, Shihong Shen, Daidi Fan. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 308-320. |
[6] | Xiaoxian Wu, Haoyue Liu, Yibin Wei, Ying Fei, Hong Qi. Negatively charged organic-inorganic hybrid silica nanofiltration membranes for lithium extraction [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 749-757. |
[7] | Wei Liang, Zhongkuan Luo, Li Zhou. Preparation and characterization of the n-HA/PVA/CS porous composite hydrogel [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 598-602. |
[8] | Cheng Lian, Dongyan Zhi, Shouhong Xu, Honglai Liu. A Molecular Thermodynamic Model for Restricted Swelling Behaviors of Thermo-sensitive Hydrogel [J]. , 2014, 22(11/12): 1307-1313. |
[9] | LIN Xi, JU Xiaojie, XIE Rui, JIANG Mingyue, WEI Jie, CHU Liangyin. Halloysite Nanotube Composited Thermo-responsive Hydrogel System for Controlled-release [J]. Chin.J.Chem.Eng., 2013, 21(9): 991-998. |
[10] | YANG Gang, SHI Hong, LIU Wenqiang, XING Weihong, XU Nanping. Investigation of Mg2+/Li+Separation by Nanofiltration [J]. , 2011, 19(4): 586-589. |
[11] | LIAO Liewen, YUE Hangbo, CUI Yingde. Crosslink Polymerization Kinetics and Mechanism of Hydrogels Composed of Acrylic Acid and 2-Acrylamido-2-methylpropane Sulfonic Acid [J]. , 2011, 19(2): 285-291. |
[12] | LI Xinming, CUI Yingde. Study on Synthesis and Chloramphenicol Release of Poly(2-hydroxyethylmethacrylate-co-acrylamide)Hydrogels [J]. , 2008, 16(4): 640-645. |
[13] |
LIN Ying, SUN Jiali, JIANG Guoqiang, ZAN Jia, DING Fuxin.
In vitro evaluation of lysozyme-loaded microspheres in thermosensitive methylcellulose- based hydrogel [J]. , 2007, 15(4): 566-572. |
[14] |
ZAN Jia, ZHU Dequan, TAN Fengping, JIANG Guoqiang, LIN Ying, DING Fuxin.
Preparation of Thermosensitive Chitosan Formulations Containing 5-Fluorouracil/Poly-3-hydroxybutyrate Microparticles Used as Injectable Drug Delivery System [J]. , 2006, 14(2): 235-241. |
[15] | HUANGJian(黄健),HUANGZhiming(黄志明),BAOYongzhong(包永忠)andWENGZhixue(翁志学). Thermosensitive Poly(N-isopropylacrylamide-co-acrylonitrile) Hydrogels with Rapid Response [J]. , 2006, 14(1): 87-92. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||