Chinese Journal of Chemical Engineering ›› 2022, Vol. 45 ›› Issue (5): 194-202.DOI: 10.1016/j.cjche.2021.05.002
Previous Articles Next Articles
Jing Dou1, Shuo Han1, Saisai Lin1, Zhikan Yao1,2, Lian Hou1,3, Lin Zhang1,2
Received:
2020-12-31
Revised:
2021-04-27
Online:
2022-06-22
Published:
2022-05-28
Contact:
Saisai Lin,E-mail:saislin@zju.edu.cn
Supported by:
Jing Dou1, Shuo Han1, Saisai Lin1, Zhikan Yao1,2, Lian Hou1,3, Lin Zhang1,2
通讯作者:
Saisai Lin,E-mail:saislin@zju.edu.cn
基金资助:
Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202.
Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization[J]. 中国化学工程学报, 2022, 45(5): 194-202.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.05.002
[1] V.G. Gude, Desalination and sustainability——An appraisal and current perspective, Water Res. 89 (2016) 87-106 [2] J.X. Sun, Y. Wang, S.C. Xu, S.C. Wang, Energy recovery device with a fluid switcher for seawater reverse osmosis system, Chin. J. Chem. Eng. 16 (2) (2008) 329-332 [3] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment:Acritical review, Water Res. 75 (2015) 164-187 [4] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes:History, applications, challenges and approaches, Water Res. 80 (2015) 306-324 [5] J.N. Zheng, F.B. Cheng, Y.P. Li, X. Lü, M.J. Yang, Progress and trends in hydrate based desalination (HBD) technology:A review, Chin. J. Chem. Eng. 27 (9) (2019) 2037-2043 [6] J.G. Wijmans, R.W. Baker, The solution-diffusion model:A review, J. Membr. Sci. 107 (1-2) (1995) 1-21 [7] D.R. Paul, Reformulation of the solution-diffusion theory of reverse osmosis, J. Membr. Sci. 241 (2) (2004) 371-386 [8] G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport properties of polymeric materials, Prog. Polym. Sci. 39 (1) (2014) 1-42 [9] M.H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31 (5) (1959) 1164-1169 [10] Z.X. Low, P.M. Budd, N.B. McKeown, D.A. Patterson, Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers, Chem. Rev. 118 (12) (2018) 5871-5911 [11] Y.C. Xiao, B.T. Low, S.S. Hosseini, T.S. Chung, D.R. Paul, The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review, Prog. Polym. Sci. 34 (6) (2009) 561-580 [12] W. Xie, H. Ju, G.M. Geise, B.D. Freeman, J.I. Mardel, A.J. Hill, J.E. McGrath, Effect of free volume on water and salt transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers, Macromolecules 44 (11) (2011) 4428-4438 [13] C.H. Lee, D. Vanhouten, O. Lane, J.E. McGrath, J.B. Hou, L.A. Madsen, J. Spano, S. Wi, J. Cook, W. Xie, H.J. Oh, G.M. Geise, B.D. Freeman, Disulfonated poly(arylene ether sulfone) random copolymer blends tuned for rapid water permeation via cation complexation with poly(ethylene glycol) oligomers, Chem. Mater. 23 (4) (2011) 1039-1049 [14] Y. Li, J.Y. Zhu, S. Li, Z. Guo, B. van der Bruggen, Flexible aliphatic-aromatic polyamide thin film composite membrane for highly efficient organic solvent nanofiltration, ACS Appl. Mater. Interfaces 12 (28) (2020) 31962-31974 [15] Y. Zhang, L.M. Yang, K.P. Pramoda, W.X. Gai, S. Zhang, Highly permeable and fouling-resistant hollow fiber membranes for reverse osmosis, Chem. Eng. Sci. 207 (2019) 903-910 [16] N. Petzetakis, C.M. Doherty, A.W. Thornton, X.C. Chen, P. Cotanda, A.J. Hill, N.P. Balsara, Membranes with artificial free-volume for biofuel production, Nat. Commun. 6 (2015) 7529 [17] B.F. Li, S. Japip, T.S. Chung, Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis, Nat. Commun. 11 (1) (2020) 1198 [18] Q.L. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci. 5 (8) (2012) 8359-8369 [19] G.M. Shi, H.M. Chen, Y.C. Jean, T.S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer 54 (2) (2013) 774-783 [20] L.W. Xu, L. Xiang, C.Q. Wang, J. Yu, L.X. Zhang, Y.C. Pan, Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals, Chin. J. Chem. Eng. 25 (7) (2017) 882-891 [21] D.L. Zhao, W.S. Yeung, Q.P. Zhao, T.-S. Chung, Thin-film nanocomposite membranes incorporated with UIO-66-NH2 nanoparticles for brackish water and seawater desalination, J. Membr. Sci. 604 (2020) 118039 [22] B.S. Ghanem, K.J. Msayib, N.B. McKeown, K.D. Harris, Z.G. Pan, P.M. Budd, A. Butler, J. Selbie, D. Book, A. Walton, A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption, Chem. Commun.(Camb) (1) (2007) 67-69 [23] N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Trends and challenges for microporous polymers, Chem. Soc. Rev. 46 (11) (2017) 3302-3321 [24] S. Das, P. Heasman, T. Ben, S.L. Qiu, Porous organic materials:strategic design and structure-function correlation, Chem. Rev. 117 (3) (2017) 1515-1563 [25] N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35 (8) (2006) 675-683 [26] Y. Han, W.S.W. Ho, Recent advances in polymeric membranes for CO2 capture, Chin. J. Chem. Eng. 26 (11) (2018) 2238-2254 [27] B.S. Ghanem, N.B. McKeown, P.M. Budd, J.D. Selbie, D. Fritsch, High-performance membranes from polyimides with intrinsic microporosity, Adv. Mater. 20 (14) (2008) 2766-2771 [28] B.S. Ghanem, N.B. McKeown, P.M. Budd, N.M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity:PIM-polyimides, Macromolecules 42 (20) (2009) 7881-7888 [29] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs):Robust, solution-processable, organic nanoporous materials, Chem. Commun. (2) (2004) 230-231 [30] N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs):Bridging the void between microporous and polymeric materials, Chem.-Eur. J. 11 (9) (2005) 2610-2620 [31] A.F. Bushell, M.P. Attfiled, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J.C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci. 427 (2013) 48-62 [32] D. Chang, M. Yu, C. Zhang, Y. Zhao, R. Kong, F.Y. Xie, J.X. Jiang, Indolo[3, 2-b]carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation, Microporous Mesoporous Mater. 228 (2016) 231-236 [33] N.Y. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser, L. Scoles, M.D. Guiver, Polymer nanosieve membranes for CO2-capture applications, Nat. Mater. 10 (5) (2011) 372-375 [34] P.M. Budd, N.B. McKeown, B.S. Ghanem, K.J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity:Polybenzodioxane PIM-1, J. Membr. Sci. 325 (2) (2008) 851-860 [35] P. Gorgojo, S. Karan, H.C. Wong, M.F. Jimenez-Solomon, J.T. Cabral, A.G. Livingston, Ultrathin polymer films with intrinsic microporosity:Anomalous solvent permeation and high flux membranes, Adv. Funct. Mater. 24 (30) (2014) 4728-4737 [36] X.M. Wu, Q.G. Zhang, F. Soyekwo, Q.L. Liu, A.M. Zhu, Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane, AIChE J. 62 (3) (2016) 842-851 [37] S. Thomas, I. Pinnau, N.Y. Du, M.D. Guiver, Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1), J. Membr. Sci. 333 (1-2) (2009) 125-131 [38] M.F. Jimenez-Solomon, Q.L. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization, Nat. Mater. 15 (7) (2016) 760-767 [39] Z.H. Wang, S. Guo, B. Zhang, L.P. Zhu, Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination, J. Membr. Sci. 592 (2019) 117375 [40] Q. Shi, K. Zhang, R.F. Lu, J.W. Jiang, Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity:Atomistic simulation study, J. Membr. Sci. 545 (2018) 49-56 [41] J.S. Song, N.Y. Du, Y. Dai, G.P. Robertson, M.D. Guiver, S. Thomas, I. Pinnau, Linear high molecular weight ladder polymers by optimized polycondensation of tetrahydroxytetramethylspirobisindane and 1, 4-dicyanotetrafluorobenzene, Macromolecules 41 (20) (2008) 7411-7417 [42] P. Yanaranop, B. Santoso, R. Etzion, J.Y. Jin, Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1), Polymer 98 (2016) 244-251 [43] K.K. Yan, L. Jiao, S.S. Lin, X.S. Ji, Y. Lu, L. Zhang, Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation, Desalination 437 (2018) 26-33 [44] C.Y. Zhu, H.N. Li, J. Yang, J.J. Li, J.R. Ye, Z.K. Xu, Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization, J. Membr. Sci. 616 (2020) 118557 [45] J. Wang, Y.T. Zhang, J.Y. Zhu, J.W. Hou, J.D. Liu, B. van der Bruggen, Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability, J. Membr. Sci. 510 (2016) 27-37 [46] F. Topuz, B. Satilmis, T. Uyar, Electrospinning of uniform nanofibers of polymers of intrinsic microporosity (PIM-1):The influence of solution conductivity and relative humidity, Polymer 178 (2019) 121610 [47] Y. Pan, L.J. Zhang, Z.J. Li, L.J. Ma, Y.F. Zhang, J. Wang, J.Q. Meng, Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal, Appl. Surf. Sci. 443 (2018) 441-451 [48] C.L. Zhang, P. Li, B. Cao, Electrospun microfibrous membranes based on PIM-1/POSS with high oil wettability for separation of oil-water mixtures and cleanup of oil soluble contaminants, Ind. Eng. Chem. Res. 54 (35) (2015) 8772-8781 [49] L.F. Liu, X. Xie, S.R. Qi, R.H. Li, X. Zhang, X.X. Song, C.J. Gao, Thin film nanocomposite reverse osmosis membrane incorporated with UIO-66 nanoparticles for enhanced boron removal, J. Membr. Sci. 580 (2019) 101-109 [50] O. Akin, F. Temelli, Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM, Desalination 278 (1-3) (2011) 387-396 [51] C.Y. Tang, Y.N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes:I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination 242 (1-3) (2009) 149-167 [52] Z. Zhang, Y.T. Qin, G.D. Kang, H.J. Yu, Y. Jin, Y.M. Cao, Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination, J. Membr. Sci. 595 (2020) 117518 [53] H. Dong, L. Zhao, L. Zhang, H.L. Chen, C.J. Gao, W.S. Winston Ho, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci. 476 (2015) 373-383 [54] S.S. Bing, J.Q. Wang, H. Xu, Y.Y. Zhao, Y. Zhou, L. Zhang, C.J. Gao, L.A. Hou, Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance, J. Membr. Sci. 555 (2018) 318-326 [55] Z. Tan, S.F. Chen, X.S. Peng, L. Zhang, C.J. Gao, Polyamide membranes with nanoscale turing structures for water purification, Science 360 (6388) (2018) 518-521 [56] S.Y. Kwak, S.G. Jung, Y.S. Yoon, D.W. Ihm, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, J. Polym. Sci. B Polym. Phys. 37 (13) (1999) 1429-1440 [57] J.X. Qin, S.S. Lin, S.Q. Song, L. Zhang, H.L. Chen, 4-dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane, ACS Appl. Mater. Interfaces 5 (14) (2013) 6649-6656 [58] H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon, J.C. Lee, High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl Mater Interfaces 6 (4) (2014) 2819-2829 [59] J.T. Duan, Y.C. Pan, F. Pacheco, E. Litwiller, Z.P. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci. 476 (2015) 303-310 [60] D.H.N. Perera, Q. Song, H. Qiblawey, E. Sivaniah, Regulating the aqueous phase monomer balance for flux improvement in polyamide thin film composite membranes, J. Membr. Sci. 487 (2015) 74-82 |
[1] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[2] | Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren. Comprehensive treatment of latex wastewater and resource utilization of concentrated liquid [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 183-192. |
[3] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[4] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[5] | Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 76-99. |
[6] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[7] | Meidi Wang, Weixiong Guo, Zhongyi Jiang, Fusheng Pan. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1039-1045. |
[8] | Santiago Gutiérrez Ruiz, Juan Antonio López-Ramírez, Mohammed Hassani Zerrouk, Agata Egea-Corbacho Lopera, José María Quiroga Alonso. Study of reverse osmosis membranes fouling by inorganic salts and colloidal particles during seawater desalination [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 733-742. |
[9] | Qi Zhang, Zhaoliang Cui, Weixing Li. High permeability poly(vinylidene fluoride) ultrafiltration membrane doped with polydopamine modified TiO2 nanoparticles [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3152-3158. |
[10] | Hongyong Zhao, Lizhong Feng, Xiaoli Ding, Xiaoyao Tan, Yuzhong Zhang. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate [J]. Chin.J.Chem.Eng., 2018, 26(12): 2477-2486. |
[11] | Yu Zhuang, Linlin Liu, Qilei Liu, Jian Du. Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model [J]. , 2017, 25(8): 1052-1060. |
[12] | Eun-Sung Jo, Xinghai An, Pravin G. Ingole, Won-Kil Choi, Yeong-Sung Park, Hyung-Keun Lee. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization [J]. , 2017, 25(3): 278-287. |
[13] | Jie Li, Mingjie Wei, Yong Wang. Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes [J]. Chin.J.Chem.Eng., 2017, 25(11): 1676-1684. |
[14] | Zhuan Yi, Fa-dong Wu, Yong Zhou, Cong-jie Gao. Novel nanofiltration membranes with tunable permselectivity by polymer mediated phase separation in polyamide selective layer [J]. Chin.J.Chem.Eng., 2016, 24(11): 1533-1540. |
[15] | WU Xianli, HU Yangdong, WU Lianying, LI Hong. Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production [J]. Chin.J.Chem.Eng., 2014, 22(3): 330-338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||