[1] Z. Nawaz, Light alkane dehydrogenation to light olefin technologies:A comprehensive review, Rev. Chem. Eng. 31(5)(2015)413-436 [2] J.C. Bricker, Advanced catalytic dehydrogenation technologies for production of olefins, Top. Catal. 55(19)(2012)1309-1314 [3] J.J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides, Chem Rev 114(20)(2014)10613-10653 [4] F.T. Zangeneh, A. Taeb, K. Gholivand, S. Sahebdelfar, Thermodynamic equilibrium analysis of propane dehydrogenation with carbon dioxide and side reactions, Chem. Eng. Commun. 203(4)(2016)557-565 [5] M. Farsi, Dynamic modelling, simulation and control of isobutane dehydrogenation in a commercial Oleflex process considering catalyst deactivation, J. Taiwan Inst. Chem. Eng. 57(2015)18-25 [6] B.V. Vora, Development of dehydrogenation catalysts and processes, Top. Catal. 55(19-20)(2012)1297-1308 [7] M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujadó, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A:Gen. 221(1-2)(2001)397-419 [8] O. Czuprat, S. Werth, J. Caro, T. Schiestel, Oxidative dehydrogenation of propane in a perovskite membrane reactor with multi-step oxygen insertion, AIChE J.(2010) NA [9] R.K. Grasselli, D.L. Stern, J.G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):II. DH+SHC catalysts physically mixed (redox process mode), Appl. Catal. A:Gen. 189(1)(1999)9-14 [10] S. Kaneko, T. Arakawa, M.A. Ohshima, H. Kurokawa, H. Miura, Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts, Appl. Catal. A:Gen. 356(1)(2009)80-87 [11] Y.L. Shan, Z.J. Sui, Y.A. Zhu, J.H. Zhou, X.G. Zhou, D. Chen, Boosting size-selective hydrogen combustion in the presence of propene using controllable metal clusters encapsulated in zeolite, Angew Chem Int Ed Engl 57(31)(2018)9770-9774 [12] R. Hu, X. Li, Z.J. Sui, G.H. Ye, X.G. Zhou, Process simulation and optimization of propane dehydrogenation combined with selective hydrogen combustion, Chem. Eng. Process.-Process. Intensif. 143(2019)107608 [13] J. Beckers, G. Rothenberg, Sustainable selective oxidations using ceria-based materials, Green Chem. 12(6)(2010)939-94 [14] X. Zhu, Q. Imtiaz, F. Donat, C.R. Müller, F.X. Li, Chemical looping beyond combustion-a perspective, Energy Environ. Sci. 13(3)(2020)772-804 [15] L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J.L. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem. 2(11)(2018)349-364 [16] J. Beckers, A. Lee, G. Rothenberg, Bismuth-doped ceria, Ce0.90Bi0.10O2:A selective and stable catalyst for clean hydrogen combustion, Adv. Synth. Catal. 351(10)(2009)1557-1566 [17] J.H. Blank, J. Beckers, P.F. Collignon, F. Clerc, G. Rothenberg, A "green route" to propene through selective hydrogen oxidation, Chemistry 13(18)(2007)5121-5128 [18] R.K. Grasselli, D.L. Stern, J.G. Tsikoyiannis, Strategies for combining light paraffin dehydrogenation (DH) with selective hydrogen combustion (SHC). Studies in Surface Science and Catalysis. Amsterdam:Elsevier, 2000:773-778 [19] J.H. Blank, J. Beckers, P.F. Collignon, G. Rothenberg, Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion, Chemphyschem 8(17)(2007)2490-2497 [20] G. Rothenberg, E.A. de Graaf, A. Bliek, Solvent-free synthesis of rechargeable solid oxygen reservoirs for clean hydrogen oxidation, Angew Chem Int Ed Engl 42(29)(2003)3366-3368 [21] J. Beckers, G. Rothenberg, Ce0.95Cr0.05O2 and Ce0.97Cu0.03O2:Active, selective and stable catalysts for selective hydrogen combustion, Dalton Trans (29)(2009)5673-5682 [22] M.S.C. Chan, H.G. Baldovi, J.S. Dennis, Enhancing the capacity of oxygen carriers for selective oxidations through phase cooperation:Bismuth oxide and ceria-zirconia, Catal. Sci. Technol. 8(3)(2018)887-897 [23] L. Låte, W. Thelin, E.A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons:Part 2. Metal oxide based catalysts, Appl. Catal. A:Gen. 262(1)(2004)63-68 [24] J. Beckers, G. Rothenberg, Lead-containing solid "oxygen reservoirs" for selective hydrogen combustion, Green Chem. 11(10)(2009)1550 [25] E.A. de Graaf, A. Andreini, E.J.M. Hensen, A. Bliek, Selective hydrogen oxidation in a mixture with ethane/ethene using cerium zirconium oxide, Appl. Catal. A:Gen. 262(2)(2004)201-206 [26] L... Van der Zande, E... De Graaf, G. Rothenberg, Design and parallel synthesis of novel selective hydrogen oxidation catalysts and their application in alkane dehydrogenation, Adv. Synth. Catal. 344(8)(2002)884-889 [27] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier, Combust. Flame 157(3)(2010)602-615 [28] S.Z. Abbas, V. Dupont, T. Mahmud, Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor, Fuel 202(2017)271-286 [29] J. Francisco Morgado, S. Cloete, J. Morud, T. Gurker, S. Amini, Modelling study of two chemical looping reforming reactor configurations:Looping vs. switching, Powder Technol. 316(2017)599-613 [30] L. Han, Z.Q. Zhou, G.M. Bollas, Heterogeneous modeling of chemical-looping combustion. Part 1:Reactor model, Chem. Eng. Sci. 104(2013)233-249 [31] D.A. Chisalita, A.M. Cormos, Dynamic simulation of fluidized bed chemical looping combustion process with iron based oxygen carrier, Fuel 214(2018)436-445 [32] S. Noorman, F. Gallucci, M. van Sint Annaland, J.A.M. Kuipers, A theoretical investigation of CLC in packed beds. Part 2:Reactor model, Chem. Eng. J. 167(1)(2011)369-376 [33] M.P. Lobera, C. Téllez, J. Herguido, M. Menéndez, Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/Al2O3 catalyst, Appl. Catal. A:Gen. 349(1-2)(2008)156-164 [34] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya, Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62(1-2)(2007)533-549 [35] D.F. Fairbanks, C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Ind. Eng. Chem. 42(3)(1950)471-475 [36] J.T. Richardson, S.A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Appl. Catal. 61(1)(1990)293-309 [37] J.T. Richardson, S.A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Appl. Catal. 61(1)(1990)293-309 [38] H.S. Fogler, Elements of Chemical Reaction Engineering, 4th ed., Prentice Hall PTR, Upper Saddle River, 2006 [39] S.Z. Abbas, V. Dupont, T. Mahmud, Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process, Int. J. Hydrog. Energy 42(30)(2017)18910-18921 |