[1] P. S. de Silva, H. H. Hansen, S. Wehberg, S. Friedman, B. M, Nørgård, Risk of ectopic pregnancy in women with inflammatory boweldisease:A 22-year nationwide cohort study, Clin. Gastroenterol. H. 16(2018)83-89 [2] Committee on Practice Bulletins-Gynecology, ACOG practice bulletin No. 191:Tubal ectopic pregnancy, Obstet. Gynecol. 131(2018)65-77 [3] J. Y. Hsu, L. Chen, A. R. Gumer, A. I. Tergas, J. Y. Hou, W. M. Burke, C. V. Ananth, D. L. Hershman, J. D. Wright, Disparities in the management of ectopic pregnancy, Am. J. Obstet. Gynecol. 217(2017)49 [4] J. L. V. Shaw, S. K. Dey, H. O. D. Critchley, A. W. Horne, Current knowledge of the aetiology of human tubal ectopic pregnancy, Hum. Reprod. Update 16(2010)432-444 [5] D. Saxon, T. Falcone, E. J. Mascha, T. Marino, M. Yao, T. Tulandi, A study of ruptured tubal ectopic pregnancy, Obstet. Gynecol. 90(1997)46-49 [6] R. Ngui, S. Ravindran, D. B. L. Ong, T. K. Chow, K. P. Low, Z. S. Nureena, Y. Rajoo, Y. T. Chin, A. Amir, A. F. Ahmad, Y. A. L. Lim, R. Mahmud, Enterobius vermicularis salpingitis seen in the setting of ectopic pregnancy in a Malaysian patient, J. Clin. Microbiol. 52(2014)3468-3470 [7] P. J. Hajenius, F. Mol, B. W. J. Mol, P. M. M. Bossuyt, W. M. Ankum, F. van der Veen, Interventions for tubal ectopic pregnancy, Cochrane Db. Syst. Rev. 1(2007)1-104 [8] The American Fertility Society, The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, Müllerian anomalies and intrauterine adhesions, Fertil. Steril. 49(1988)944-955 [9] J. F. Gauwerky, R. P. Klose, P. Vierneisel, G. Bastery, Fibrin glue for reanastomosis of the fallopian tube in the rabbit:Adhesions and fertility, Human Reprod. 7(1992)1274 [10] J. L. Drury, D. J. Mooney, Hydrogels for tissue engineering:Scaffold design variables and applications, Biomaterials 24(2003)4337-4351 [11] C. F. Guimarães, L. Gasperini, A. P. Marques, R. L. Reis, The stiffness of living tissues and its implications for tissue engineering, Nat. Rev. Mater. 5(2020)351-370 [12] F. J. O'Brien, Biomaterials&scaffolds for tissue engineering, Mater. Today 14(2011)88-95 [13] S. Hollister, Porous scaffold design for tissue engineering,Nature Mater.4(2005)518-524 [14] T. M. Freyman, I. V. Yannas, L. J. Gibson, Cellular materials as porous scaffolds for tissue engineering, Prog. Mater. Sci. 46(2001)273-282 [15] Q. L. Loh, C. Choong, Three-dimensional scaffolds for tissue engineering applications:Role of porosity and pore size, Tissue Eng. Part B-Rev. 19(2013)485-502 [16] Ž. Knez, E. Markočič, M. Leitgeb, M. Primožič, M. K. Hrnčič, M. Škerget, Industrial applications of supercritical fluids:A review, Energy 77(2014)235-243 [17] L. J. M. Jacobs, M. F. Kemmerea, J. T. F. Keurentjesa, Sustainable polymer foaming using high pressure carbon dioxide:A review on fundamentals, processes and applications, Green Chem. 10(2008)731-738 [18] D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee, K. W. Koelling, A review of CO2 applications in the processing of polymers, Ind. Eng. Chem. Res. 42(2003)6431-6456 [19] A. R. C. Duarte, J. F. Mano, R. L. Reis, Supercritical fluids in biomedical and tissue engineering applications:A review, Int. Mater. Rev. 54(2009)214-222 [20] R. A. Quirk, R. M. France, K. M. Shakesheff, S. M. Howdle, Supercritical fluid technologies and tissue engineering scaffolds, Curr. Opin. Solid St. M. 8(2004)313-321 [21] L. M. Mathieu, M. O. Montjovent, P. E. Bourban, D. P. Pioletti, J. A. E. Månson, Bioresorbable composites prepared by supercritical fluid foaming, J. Biomed. Mater. Res. A 75(2005)89-97 [22] D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, R. Langer, Novel approach to fabricate porous sponges of poly (D, L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17(1996)1417-1422 [23] M.-O. Montjovent, L. Mathieu, B. Hinz, L. L. Applegate, P.-E. Bourban, P.-Y. Zambelli, J.-A. Månson, D. P. Pioletti, Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells, Tissue Eng. 11(2005)1640-1649 [24] J. J. A. Barry, H. S. Gidda, C. A. Scotchford, S. M. Howdle, Porous methacrylate scaffolds:supercritical fluid fabrication and in vitro chondrocyte responses, Biomaterials 25(2004)3559-3568 [25] H. Li, T. K. Sinha, J. S. Oh, J. K. Kim, Soft and flexible bilayer thermoplastic polyurethane foam for development of bioinspired artificial skin, ACS Appl. Mater. Inter. 10(2018)14008-14016 [26] J. Hou, J. Jiang, H. Guo, X. Guo, X. Wang, Y. Shen, Q. Li, Fabrication of fibrillated and interconnected porous poly (ε-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching, RSC Adv. 10(2020)10055-10066 [27] T. P. Haider, C. Völker, J. Kramm, K. Landfester, F. R. Wurm, Plastics of the future?The impact of biodegradable polymers on the environment and on society,Angew. Chem. Int. Ed.58(2019)50-62 [28] R. Muthuraj, M. Misra, A. K. Mohanty, Biodegradable compatibilized polymer blends for packaging applications:A literature review, J. Appl. Polym. Sci. 135(2018)45726 [29] F. V. Ferreira, L. S. Cividanes, R. F. Gouveia, L. M. Lona, An overview on properties and applications of poly (butylene adipate-co-terephthalate)-PBAT based composites, Polym. Eng. Sci. 59(2019)7-15 [30] J. Song, J. Mi, H. Zhou, X. Wang, Y. Zhang, Chain extension of poly (butylene adipate-co-terephthalate) and its microcellular foaming behaviors, Polym. Degrad. Stab. 157(2018)143-152 [31] J. P. Eubeler, M. Bernhard, T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, Trends Anal. Chem. 29(2010)84-100 [32] A. R. Bagheri, C. Laforsch, A. Greiner, S. Agarwal, Fate of so-called biodegradable polymers in seawater and freshwater, Global Challenges 1(2017)1700048 [33] L. S. Naira, C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32(2007)762-798 [34] J. M. Anderson, M. S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Delivery Rev. 64(2012)72-82 [35] R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices, Biomaterials 21(2000)2475-2490 [36] B. Tesfamariam, Bioresorbable vascular scaffolds:Biodegradation, drug delivery and vascular remodeling, Pharmacol. Res. 107(2016)163-171 [37] A.M. Reed, D.K. Gilding, Biodegradable polymers for use in surgery-poly (glycolic)/poly (lactic acid) homo and copolymers:2. In vitro degradation, Polymer 22(1981)494-498. [38] E. J. Frazza, E. E. Schmitt, A new absorbable suture, J. Biomed. Mater. Res. 5(1971)43-58 [39] J. Zhang, L. Luo, S. Lyu, J. Schley, B. Pudil, M. Benz, A. Buckalew, K. Chaffin, C. Hobot, R. Sparer, Spontaneous transesterification reactions between poly (lactide-co-glycolide) and poly (trimethylene carbonate) at the interface, J. Appl. Polym. Sci. 117(2010)2153-2158 [40] C.-X. Chen, Q.-Q. Liu, X. Xin, Y.-X. Guan, S.-J. Yao, Pore formation of poly (ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming, J. Supercrit. Fluids 117(2016)279-288 [41] L. Wang, H. Zhou, X. Wang, J. Mi, Evaluation of nanoparticle effect on bubble nucleation in polymer foaming, J. Phys. Chem. C 120(2016)26841-26851 [42] L. J. White, V. Hutter, H. Tai, S. M. Howdle, K. M. Shakesheff, The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering, Acta Biomater. 8(2012)61-71 [43] J. J. Stangel, J. V. Reyniak, M. L. Stone, Conservative surgical management of tubal pregnancy, Obstet. Gynecol. 48(1976)241-244 [44] M. K. Rajendran, Tubal recanalisation-microsurgical tubal reversal anastomosis, Int. Surg. J. 5(2018)3873-3876 [45] I. Gerçek, R. S. Tıǧlı, M. Gümüşderelioǧlu, A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying, J. Biomed. Mater. Res. A 86A (2007)1549-3296 [46] L. J. Gibson, M. F. Ashby, Cellular solids:structure and properties, Cambridge University Press, Cambridge, 1997 [47] R. M. Borland, J. D. Biggers, C. P. Lechene, M. L. Taymor, Elemental composition of fluid in the human fallopian tube, J. Reprod. Fertil. 58(1980)479-482 [48] H. J. Leese, J. I. Tay, J. Reischl, S. J. Downing, Formation of fallopian tubal fluid:role of a neglected epithelium, Reproduction 121(2001)339-46 [49] C. E. Holy, S. M. Dang, J. E. Davies, M. S. Shoichet, In vitro degradation of a novel poly (lactide-co-glycolide)75/25 foam, Biomaterials 20(1999)1177-1185 [50] J. Zhang, B. Xie, Z. Xia, L. Zhao, L. Cen, Y. Yang, A comparable study of polyglycolic acid's degradation on macrophages'activation, Mat. Sci. Eng. C 109(2020)110574 |