[1] Z.Q. Ge, Review on data-driven modeling and monitoring for plant-wide industrial processes, Chemom. Intell. Lab. Syst. 171(2017)16-25 [2] S. Joe Qin, Statistical process monitoring:Basics and beyond, J. Chemometrics 17(8-9)(2003)480-502 [3] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52(10)(2013)3543-3562 [4] Z.Q. Wang, L. Wang, Z.H. Yuan, B.Z. Chen, Data-driven optimal operation of the industrial methanol to olefin process based on relevance vector machine, Chin. J. Chem. Eng.(2020) [5] H.G. Han, S.G. Zhu, J.F. Qiao, M. Guo, Data-driven intelligent monitoring system for key variables in wastewater treatment process, Chin. J. Chem. Eng. 26(10)(2018)2093-2101 [6] M. Nawaz, A.S. Maulud, H. Zabiri, S.A.A. Taqvi, A. Idris, Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework, Chin. J. Chem. Eng. 29(2021)253-265 [7] G.Z. Wang, J.C. Liu, Y. Li, C. Zhang, Fault diagnosis of chemical processes based on partitioning PCA and variable reasoning strategy, Chin. J. Chem. Eng. 24(7)(2016)869-880 [8] Y. Li, D.S. Yang, Local component based PCA model for Multimode Process Monitoring, Chin. J. Chem. Eng.(2020) [9] K.L. Liu, X. Jin, Z.S. Fei, J. Liang, Adaptive partitioning PCA model for improving fault detection and isolation, Chin. J. Chem. Eng. 23(6)(2015)981-991 [10] W.F. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemom. Intell. Lab. Syst. 30(1)(1995)179-196 [11] J.M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, I.B. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59(1)(2004)223-234 [12] C.H. Zhao, F.L. Wang, F.R. Gao, N.Y. Lu, M.X. Jia, Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data, Ind. Eng. Chem. Res. 46(14)(2007)4943-4953 [13] C.H. Zhao, F.L. Wang, F.R. Gao, N.Y. Lu, M.X. Jia, Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data, Ind. Eng. Chem. Res. 46(14)(2007)4943-4953 [14] J.M. Lee, C. Yoo, I.B. Lee, On-line batch process monitoring using a consecutively updated multiway principal component analysis model, Comput. Chem. Eng. 27(12)(2003)1903-1912 [15] J.M. Lee, C. Yoo, I.B. Lee, Fault detection of batch processes using multiway kernel principal component analysis, Comput. Chem. Eng. 28(9)(2004)1837-1847 [16] Y.S. Ng, R. Srinivasan, An adjoined multi-model approach for monitoring batch and transient operations, Comput. Chem. Eng. 33(4)(2009)887-902 [17] Q. Chen, U. Kruger, M. Meronk, A.Y.T. Leung, Synthesis of T2 and Q statistics for process monitoring, Control. Eng. Pract. 12(6)(2004)745-755 [18] Q.X. Zhu, Y. Luo, Y.L. He, Novel distributed alarm visual analysis using multicorrelation block-based PLS and its application to online root cause analysis, Ind. Eng. Chem. Res. 58(45)(2019)20655-20666 [19] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel principal component analysis, Ind. Eng. Chem. Res. 49(17)(2010)7849-7857 [20] H. Sun, S.M. Zhang, C.H. Zhao, F.R. Gao, A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with No a priori fault information, Ind. Eng. Chem. Res. 56(24)(2017)6993-7008 [21] M. Onel, C.A. Kieslich, Y.A. Guzman, C.A. Floudas, E.N. Pistikopoulos, Big data approach to batch process monitoring:Simultaneous fault detection and diagnosis using nonlinear support vector machine-based feature selection, Comput Chem Eng 115(2018)46-63 [22] H.T. Wang, Y.M. Chen, A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units, Energy Build. 127(2016)442-451 [23] C. Xu, S.Y. Zhao, F. Liu, Sensor fault detection and diagnosis in the presence of outliers, Neurocomputing 349(2019)156-163 [24] R. Srinivasan, S.Q. Ming, Online fault diagnosis and state identification during process transitions using dynamic locus analysis, Chem. Eng. Sci. 61(18)(2006)6109-6132 [25] Y.Y. Dai, J.S. Zhao, Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system, Ind. Eng. Chem. Res. 50(8)(2011)4534-4544 [26] Dai, Y, Y. Qiu, and Z. Feng. Research on faulty antibody library of dynamic artificial immune system for fault diagnosis of chemical process (Book Chapter). Computer Aided Chemical Engineering, 44(2018)493-98 [27] G.E. Fainekos, G.J. Pappas, Robustness of temporal logic specifications for continuous-time signals, Theor. Comput. Sci. 410(42)(2009)4262-4291 [28] M. Reynolds, Metric temporal logic revisited, Acta Informatica 53(3)(2016)301-324 [29] V. Raman,A Donzé, D Sadigh, Richard M. Murray, Sanjit A. Seshia. Reactive synthesis from signal temporal logic specifications. In international Conference on Hybrid Systems:Computation and Control. 2015 [30] M. Onel, C.A. Kieslich, E.N. Pistikopoulos, A nonlinear support vector machine-based feature selection approach for fault detection and diagnosis:Application to the Tennessee Eastman process, AIChE J 65(3)(2019)992-1005 [31] A. Kumar, A. Bhattacharya, J. Flores-Cerrillo, Data-driven process monitoring and fault analysis of reformer units in hydrogen plants:Industrial application and perspectives, Comput. Chem. Eng. 136(2020)106756 [32] Maurya, M. R, Rengaswamy, R. r. c. e,&Venkatasubramanian, V. Fault Diagnosis Using Dynamic Trend Analysis:A Review and Recent Developments. Engineering Applications of Artificial Intelligence:The International Journal of Intelligent Real-Time Automation. 20(2007)133-146 [33] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(3)(1993)245-255 [34] H. Wu, J.S. Zhao, Fault detection and diagnosis based on transfer learning for multimode chemical processes, Comput. Chem. Eng. 135(2020)106731 [35] M.M. Rashid, J. Yu, Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach, Ind. Eng. Chem. Res. 51(33)(2012)10910-10920 |