[1] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X. Sen Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy. 162(2016)1633-1652 [2] H.J. Eom, S. HeeAn, B.H. Chon, Evaluation of shale gas reservoirs considering the effect of fracture half-length and fracture spacing in multiple hydraulically fractured horizontal wells, Geosystem Eng. 17(2014)264-278 [3] M. Shah, S. Shah, A. Sircar, A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs, J. Nat. Gas Sci. Eng. 46(2017)350-364 [4] J.J.H.B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides, Chem. Rev. 114(2014)10613-10653 [5] D. Dong, Y. Wang, X. Li, C. Zou, Q. Guan, C. Zhang, J. Huang, S. Wang, H. Wang, H. Liu, W. Bai, F. Liang, W. Lin, Q. Zhao, D. Liu, Z. Qiu, Breakthrough and prospect of shale gas exploration and development in China, Nat. Gas Ind. B. 3(2016)12-26 [6] M. Finkel, J. Hays, A. Law, The shale gas boom and the need for rational policy, Am. J. Public Health. 103(2013)1161-1163 [7] A. Galadima, O. Muraza, Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas:A review, J. Ind. Eng. Chem. 37(2016)1-13 [8] H. Hu, W. Wei, C.P. Chang, Do shale gas and oil productions move in convergence?An investigation using unit root tests with structural breaks, Econ. Model. 77(2019)21-33 [9] Q. Wang, X. Chen, A.N. Jha, H. Rogers, Natural gas from shale formation-The evolution, evidences and challenges of shale gas revolution in United States, Renew. Sustain. Energy Rev. 30(2014)1-28 [10] J.J. Siirola, The impact of shale gas in the chemical industry, AIChE J. 60(2014)810-819 [11] S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins:A state-of-the-art review I:Thermal cracking review, Fuel. 140(2015)102-115 [12] M.K. Sabbe, K.M. Van Geem, M.-F. Reyniers, G.B. Marin, First principle-based simulation of ethane steam cracking, AIChE J. 57(2011)482-496 [13] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:A state-of-the-art review II:Catalytic cracking review, Fuel. 173(2016)285-297 [14] A.S. Al-Awadi, A.M. El-Toni, S.M. Al-Zahrani, A.E. Abasaeed, M. Alhoshan, A. Khan, J.P. Labis, A. Al-Fatesh, Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide, Appl. Catal. A Gen. 584(2019)117114 [15] M. Hurtado Cotillo, D. Unsihuay, C.E. Santolalla-Vargas, A. Paredes Doig, R. Sun Kou, G. Picasso, Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane, Catal. Today. 356(2020)312-321 [16] B. Fu, J. Lu, P.C. Stair, G. Xiao, M.C. Kung, H.H. Kung, Oxidative dehydrogenation of ethane over alumina-supported Pd catalysts. Effect of alumina overlayer, J. Catal. 297(2013)289-295 [17] C.A. Gärtner, A.C. vanVeen, J.A. Lercher, Oxidative dehydrogenation of ethane:Common principles and mechanistic aspects, ChemCatChem. 5(2013)3196-3217 [18] S.F. Håkonsen, J.C. Walmsley, A. Holmen, Ethene production by oxidative dehydrogenation of ethane at short contact times over Pt-Sn coated monoliths, Appl. Catal. A Gen. 378(2010)1-10 [19] L. Ji, J. Liu, X. Chen, M. Li, Effect of group VIII elements on the behavior of Li/CaO catalyst in the oxidative dehydrogenation of ethane, React. Kinet. Catal. Lett. 62(1997)121-128 [20] Q. Zhang, J. Wang, T. Wang, Enhancing the Acetylene Yield from Methane by Decoupling Oxidation and Pyrolysis Reactions:A Comparison with the Partial Oxidation Process, Ind. Eng. Chem. Res. 55(2016)8383-8394 [21] Q. Zhang, J. Luo, T. Chen, J. Wang, T. Wang, Enhancement of the acetylene and ethylene yields from ethane by partially decoupling the oxidation and pyrolysis reactions, Chem. Eng. Process. Process Intensif. 122(2017)447-459 [22] J. Luo, J. Wang, T. Wang, Experimental study of partially decoupled oxidation of ethane for producing ethylene and acetylene, Chinese J. Chem. Eng. 26(2018)1312-1320 [23] J. Luo, J. Wang, T. Wang, A new forward-impinging-back reactor for the scale-up of partially decoupled oxidation of ethane to produce ethylene and acetylene, Chem. Eng. Process.-Process Intensif. 145(2019)107646 [24] T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-? eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids. 24(1995)227-238 [25] Q. Zhang, Y. Liu, T. Chen, X. Yu, J. Wang, T. Wang, Simulations of methane partial oxidation by CFD coupled with detailed chemistry at industrial operating conditions, Chem. Eng. Sci. 142(2016)126-136 [26] G.D. Stefanidis, B. Merci, G.J. Heynderickx, G.B. Marin, CFD simulations of steam cracking furnaces using detailed combustion mechanisms, Comput. Chem. Eng. 30(2006)635-649 [27] G. Hu, C.M. Schietekat, Y. Zhang, F. Qian, G. Heynderickx, K.M. Van Geem, G.B. Marin, Impact of Radiation Models in Coupled Simulations of Steam Cracking Furnaces and Reactors, Ind. Eng. Chem. Res. 54(2015)2453-2465 [28] I.S. Ertesvag, B.F. Magnussen, The eddy dissipation turbulence energy cascade model, Combust. Sci. Technol. 159(2000)213-235 [29] S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1(1997)41-63 [30] Y. Liu, Q. Zhang, T. Wang, Detailed Chemistry Modeling of Partial Combustion of Natural Gas for Coproducing Acetylene and Syngas, Combust. Sci. Technol. 189(2017)908-922 [31] D.M.G. Gregory, P. Smith Michael Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C. Thomas Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, The GRI 3.0 mechanism,(2008), http://www.me.berkeley.edu/gri_mech/. [32] M.W.M. van Goethem, S. Barendregt, J. Grievink, P.J.T. Verheijen, M. Dente, E. Ranzi, A kinetic modelling study of ethane cracking for optimal ethylene yield, Chem. Eng. Res. Des. 91(2013)1106-1110 |