[1] X.Y. Zhang, P. Gu, X.Y. Li, G.H. Zhang, Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon, Chem. Eng. J. 322 (2017) 129-139. 10.1016/j.cej.2017.03.102 [2] D.K.L. Harijan, V. Chandra, T. Yoon, K.S. Kim, Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole, J. Hazard. Mater. 344 (2018) 576-584. 10.1016/j.jhazmat.2017.10.065 [3] Y.Z. Tang, H.L. Huang, J. Li, W.J. Xue, C.L. Zhong, IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture, J. Mater. Chem. A 7 (31) (2019) 18324-18329. 10.1039/c9ta04408f [4] X.P. Yu, W.J. Cui, F. Zhang, Y.F. Guo, T.L. Deng, Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption, Desalination 458 (2019) 76-83. 10.1016/j.desal.2019.02.006 [5] Y. Feng, P.F. Yang, Y.S. Li, J.L. Gu, AgNPs-containing metal-organic frameworks for the effective adsorption and immobilization of radioactive iodine, J. Chem. Eng. Data 65 (4) (2020) 1986-1992. 10.1021/acs.jced.9b01146 [6] K. Watson, M.J. Farré, N. Knight, Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation:a critical review, J. Environ. Manage. 110 (2012) 276-298.https://pubmed.ncbi.nlm.nih.gov/22810000/ [7] J.H. Luo, X. Du, F.F. Gao, Y.Y. Yang, X.Q. Hao, S.S. Li, X.G. Hao, K.Y. Tang, G.Q. Guan, Iodide ion trapping polypyrrole film:selective capture of iodide ions by electrochemically switched ion extraction (ESIE) process, Chem. Eng. J. 380 (2020) 122529. 10.1016/j.cej.2019.122529 [8] J.H. Luo, X. Du, F.F. Gao, P.F. Ma, X.G. Hao, G.Q. Guan, O. Scialdone, J. Li, Electrochemically triggered iodide-vacancy BiOI film for selective extraction of iodide ion from aqueous solutions, Sep. Purif. Technol. 259 (2021) 118120. 10.1016/j.seppur.2020.118120 [9] M. Karthikeyan, K.K. Satheeshkumar, K.P. Elango, Removal of fluoride ions from aqueous solution by conducting polypyrrole, J. Hazard. Mater. 167 (1-3) (2009) 300-305.https://pubmed.ncbi.nlm.nih.gov/19233561/ [10] S. Zhang, Y.Y. Shao, J. Liu, I.A. Aksay, Y.H. Lin, Graphene-polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4- from wastewater, ACS Appl. Mater. Interfaces 3 (9) (2011) 3633-3637. 10.1021/am200839m [11] W.W. Ji, J.J. Niu, W. Zhang, X. Li, W.J. Yan, X.G. Hao, Z.D. Wang, An electroactive ion exchange hybrid film with collaboratively-driven ability for electrochemically-mediated selective extraction of chloride ions, Chem. Eng. J. 427 (2022) 130807. 10.1016/j.cej.2021.130807 [12] J.H. Luo, X. Du, F.F. Gao, H.X. Kong, X.G. Hao, A. Abudula, G.Q. Guan, X.L. Ma, B. Tang, An electrochemically switchable triiodide-ion-imprinted PPy membrane for highly selective recognition and continuous extraction of iodide, Sep. Purif. Technol. 251 (2020) 117312. 10.1016/j.seppur.2020.117312 [13] W.B. Ma, X. Du, M.M. Liu, F.F. Gao, X.L. Ma, Y.G. Li, G.Q. Guan, X.G. Hao, A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions, Chem. Eng. J. 412 (2021) 128576. 10.1016/j.cej.2021.128576 [14] Hiratani T, Hamad WY, MacLachlan MJ, Transparent depolarizing organic and inorganic films for optics and sensors, Adv. Mater. 29 (13) (2017) 2017Apr;29(13).https://pubmed.ncbi.nlm.nih.gov/28128872/ [15] L.H. Ai, Y. Zeng, J. Jiang, Hierarchical porous BiOI architectures:Facile microwave nonaqueous synthesis, characterization and application in the removal of Congo red from aqueous solution, Chem. Eng. J. 235 (2014) 331-339. 10.1016/j.cej.2013.09.046 [16] N. Talreja, M. Ashfaq, D. Chauhan, A.C. Mera, C.A. Rodríguez, Strategic doping approach of the Fe-BiOI microstructure:an improved photodegradation efficiency of tetracycline, ACS Omega 6 (2) (2021) 1575-1583. 10.1021/acsomega.0c05398 [17] S.H. Ma, X. Luo, G. Ran, Y.P. Li, Z.Q. Cao, X.Y. Liu, G.Q. Chen, J.H. Yan, L. Wang, Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing, Chem. Eng. J. 435 (2022) 134810. 10.1016/j.cej.2022.134810 [18] R.F. Dong, Y. Hu, Y.F. Wu, W. Gao, B.Y. Ren, Q.L. Wang, Y.P. Cai, Visible-light-driven BiOI-based Janus micromotor in pure water, J. Am. Chem. Soc. 139 (5) (2017) 1722-1725. 10.1021/jacs.6b09863 [19] J.W. Bai, Y. Li, P.K. Wei, J.D. Liu, W. Chen, L. Liu, Enhancement of photocatalytic activity of Bi2 O3-BiOI composite nanosheets through vacancy engineering, Small 15 (23) (2019) e1900020.https://pubmed.ncbi.nlm.nih.gov/31018044/ [20] S. Vadivel, B. Saravanakumar, M. Kumaravel, D. Maruthamani, N. Balasubramanian, A. Manikandan, G. Ramadoss, B. Paul, S. Hariganesh, Facile solvothermal synthesis of BiOI microsquares as a novel electrode material for supercapacitor applications, Mater. Lett. 210 (2018) 109-112. 10.1016/j.matlet.2017.08.137 [21] D.M. Chen, J.J. Yang, Y. Zhu, Y.M. Zhang, Y.F. Zhu, Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance, Appl. Catal. B Environ. 233 (2018) 202-212. 10.1016/j.apcatb.2018.04.004 [22] Q.Z. Wang, L.H. Zheng, Y.T. Chen, J.F. Fan, H.H. Huang, B.T. Su, Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B, J. Alloys Compd. 637 (2015) 127-132. 10.1016/j.jallcom.2015.02.201 [23] L.X. Jiang, C.W. Dong, B. Jin, Z. Wen, Q. Jiang, ZnFe2O4@PPy core-shell structure for high-rate lithium-ion storage, J. Electroanal. Chem. 851 (2019) 113442. 10.1016/j.jelechem.2019.113442 [24] X.S. Xu, Y.Q. Qiu, J.P. Wu, B.C. Ding, Q.H. Liu, G.S. Jiang, Q.Q. Lu, J.G. Wang, F. Xu, H.Q. Wang, Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage, Chin. J. Chem. Eng. 32 (2021) 416-422. 10.1016/j.cjche.2020.09.055 [25] J.J. Dong, Y. Lin, H.W. Zong, H.B. Yang, Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors, Appl. Surf. Sci. 470 (2019) 1043-1052. 10.1016/j.apsusc.2018.11.204 [26] J.X. Gao, T.F. Wang, Q. Shu, Z. Nawaz, Q. Wen, D.Z. Wang, J.F. Wang, An adsorption kinetic model for sulfur dioxide adsorption by ZL50 activated carbon, Chin. J. Chem. Eng. 18 (2) (2010) 223-230. 10.1016/S1004-9541(08)60346-8 [27] L. Kentjono, J.C. Liu, W.C. Chang, C. Irawan, Removal of boron and iodine from optoelectronic wastewater using Mg-Al (NO3) layered double hydroxide, Desalination 262 (1-3) (2010) 280-283. 10.1016/j.desal.2010.06.015 [28] S.L. Liao, C.F. Xue, Y.H. Wang, J.L. Zheng, X.G. Hao, G.Q. Guan, A. Abuliti, H. Zhang, G.Z. Ma, Simultaneous separation of iodide and cesium ions from dilute wastewater based on PPy/PTCF and NiHCF/PTCF electrodes using electrochemically switched ion exchange method, Separ. Purif. Technol. 139 (2015) 63-69 [29] A. Bo, S. Sarina, Z.F. Zheng, D.J. Yang, H.W. Liu, H.Y. Zhu, Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent, J. Hazard. Mater. 246-247 (2013) 199-205 |