[1] D.Q. Su, M. Huang, J.H. Zhang, X.M. Guo, J.L. Chen, Y.C. Xue, A.H. Yuan, Q.H. Kong, High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage, Nano Res. 13 (10) (2020) 2862–2868.http://dx.doi.org/10.1007/s12274-020-2944-0 [2] M. Huang, B.J. Xi, N.X. Shi, J.K. Feng, Y.T. Qian, D.F. Xue, S.L. Xiong, Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage, Small Struct. 2 (4) (2021) 2000085.http://dx.doi.org/10.1002/sstr.202000085 [3] D. Zhang, X.M. Guo, X.Z. Tong, Y.F. Chen, M.T. Duan, J. Shi, C.W. Jiang, L.L. Hu, Q.H. Kong, J.H. Zhang, High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide, J. Alloys Compd. 837 (2020) 155529.http://dx.doi.org/10.1016/j.jallcom.2020.155529 [4] X.M. Guo, C. Qian, R.H. Shi, W. Zhang, F. Xu, S.L. Qian, J.H. Zhang, H.X. Yang, A.H. Yuan, T.X. Fan, Biomorphic CoNC/CoO x composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction, Small 15 (8) (2019) 1804855.https://doi.org/10.1002/smll.201804855 [5] Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries, Chem. Soc. Rev. 45 (20) (2016) 5605–5634.https://doi.org/10.1039/c5cs00410a [6] W.Z. Tian, B.J. Xi, Y. Gu, Q. Fu, Z.Y. Feng, J.K. Feng, S.L. Xiong, Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries, Nano Res. 13 (10) (2020) 2673–2682.http://dx.doi.org/10.1007/s12274-020-2909-3 [7] A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev. 114 (23) (2014) 11751–11787.https://pubmed.ncbi.nlm.nih.gov/25026475/ [8] N. Song, B.J. Xi, P. Wang, X.J. Ma, W.H. Chen, J.K. Feng, S.L. Xiong, Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries, Nano Res. 15 (2) (2022) 1424–1432.http://dx.doi.org/10.1007/s12274-021-3681-8 [9] A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (5) (2013) 1125–1134.https://pubmed.ncbi.nlm.nih.gov/23095063/ [10] P. Wang, B.J. Xi, Z. Zhang, M. Huang, J.K. Feng, S.L. Xiong, Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries, Angew. Chem. Int. Ed. 60 (28) (2021) 15563–15571.https://doi.org/10.1002/anie.202104053 [11] Y. Yang, G.Y. Zheng, Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev. 42 (7) (2013) 3018–3032.https://pubmed.ncbi.nlm.nih.gov/23325336/ [12] S. Evers, L.F. Nazar, New approaches for high energy density lithium-sulfur battery cathodes, Acc. Chem. Res. 46 (5) (2013) 1135–1143.https://pubmed.ncbi.nlm.nih.gov/23054430/ [13] W.D. Zhou, Y.C. Yu, H. Chen, F.J. DiSalvo, H.D. Abruña, Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries, J. Am. Chem. Soc. 135 (44) (2013) 16736–16743.https://pubmed.ncbi.nlm.nih.gov/24112042/ [14] X.L. Ji, S. Evers, R. Black, L.F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat Commun 2 (2011) 325.https://pubmed.ncbi.nlm.nih.gov/21610728/ [15] M.R. Wu, M.Y. Gao, S.Y. Zhang, R. Yang, Y.M. Chen, S.Q. Sun, J.F. Xie, X.M. Guo, F. Cao, J.H. Zhang, High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater. 28 (10) (2021) 1656–1665.http://dx.doi.org/10.1007/s12613-021-2319-x [16] X.L. Zhang, W.K. Wang, A.B. Wang, Y.Q. Huang, K.G. Yuan, Z.B. Yu, J.Y. Qiu, Y.S. Yang, Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery, J. Mater. Chem. A 2 (30) (2014) 11660–11665.https://doi.org/10.1039/c4ta01709a [17] J. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium-sulphur batteries, J. Power Sources 255 (2014) 204–218.http://dx.doi.org/10.1016/j.jpowsour.2014.01.023 [18] D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng, L.X. Yuan, Z. Li, Y.H. Huang, Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries, Adv. Funct. Mater. 31 (2) (2021) 2001201.http://dx.doi.org/10.1002/adfm.202001201 [19] Y.S. Su, A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nat Commun 3 (2012) 1166.https://pubmed.ncbi.nlm.nih.gov/23132016/ [20] Y.S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer, Chem. Commun. (Camb) 48 (70) (2012) 8817–8819.https://pubmed.ncbi.nlm.nih.gov/22837055/ [21] G.M. Zhou, S.F. Pei, L. Li, D.W. Wang, S.G. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries, Adv. Mater. 26 (4) (2014) 625–631.http://dx.doi.org/10.1002/adma.201302877 [22] S.H. Chung, A. Manthiram, A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries, Chem. Commun. (Camb) 50 (32) (2014) 4184–4187.https://pubmed.ncbi.nlm.nih.gov/24615346/ [23] Z.C. Song, X.L. Lu, Q. Hu, J. Ren, W.Q. Zhang, Q.J. Zheng, D.M. Lin, Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium-sulfur batteries, J. Power Sources 421 (2019) 23–31.http://dx.doi.org/10.1016/j.jpowsour.2019.03.003 [24] Y.Z. Zhang, G.X. Xu, Q. Kang, L. Zhan, W.Q. Tang, Y.X. Yu, K.L. Shen, H.C. Wang, X. Chu, J.Y. Wang, S.L. Zhao, Y.L. Wang, L.C. Ling, S.B. Yang, Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium–sulfur batteries, J. Mater. Chem. A 7 (28) (2019) 16812–16820.https://doi.org/10.1039/c9ta03516h [25] H. Ahn, Y. Kim, J. Bae, Y.K. Kim, W.B. Kim, A multifunctional SnO2-nanowires/carbon composite interlayer for high-performance lithium-sulfur batteries, Chem. Eng. J. 401 (2020) 126042.http://dx.doi.org/10.1016/j.cej.2020.126042 [26] S.K. Lee, H. Kim, S. Bang, S.T. Myung, Y.K. Sun, WO 3 nanowire/carbon nanotube interlayer as a chemical adsorption mediator for high-performance lithium-sulfur batteries, Molecules 26 (2) (2021) 377.https://pubmed.ncbi.nlm.nih.gov/33450880/ [27] P. Wang, B.J. Xi, M. Huang, W.H. Chen, J.K. Feng, S.L. Xiong, Emerging catalysts to promote kinetics of lithium–sulfur batteries, Adv. Energy Mater. 11 (7) (2021) 2002893.https://doi.org/10.1002/aenm.202002893 [28] Z.H. Sun, Y.P. Guo, B.E. Li, T.Z. Tan, Y. Zhao, ZnO/carbon nanotube/reduced graphene oxide composite film as an effective interlayer for lithium/sulfur batteries, Solid State Sci. 95 (2019) 105924.http://dx.doi.org/10.1016/j.solidstatesciences.2019.06.013 [29] E.C. Cengiz, R. Demir-Cakan, TiO2 embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries, J. Solid State Electrochem. 24 (10) (2020) 2469–2478.http://dx.doi.org/10.1007/s10008-020-04785-x [30] Y.C. Xue, X.M. Guo, M.R. Wu, J.L. Chen, M.T. Duan, J. Shi, J.H. Zhang, F. Cao, Y.J. Liu, Q.H. Kong, Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res. 14 (10) (2021) 3598–3607.http://dx.doi.org/10.1007/s12274-021-3640-4 [31] J. Shi, X.M. Guo, S.J. Liu, Y. Sun, J.H. Zhang, Y.J. Liu, X.J. Zheng, Q.H. Kong, An altered nanoemulsion assembly strategy for in situ synthesis of Co2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries, Compos. B Eng. 231 (2022) 109589.http://dx.doi.org/10.1016/j.compositesb.2021.109589 [32] C. Qian, X.M. Guo, W. Zhang, H.X. Yang, Y. Qian, F. Xu, S.L. Qian, S.L. Lin, T.X. Fan, Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction, Microporous Mesoporous Mater. 277 (2019) 45–51.http://dx.doi.org/10.1016/j.micromeso.2018.10.020 [33] J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries, Adv. Energy Mater. 8 (2) (2018) 1701330.http://dx.doi.org/10.1002/aenm.201701330 [34] T. Chen, J.T. Chen, K. Waki, An activity recoverable carbon nanotube based electrocatalysts: rapid annealing effects and importance of defects, Carbon 129 (2018) 119–127.http://dx.doi.org/10.1016/j.carbon.2017.12.010 [35] A. Ōya, S. Ōtani, Catalytic graphitization of carbons by various metals, Carbon 17 (2) (1979) 131–137.http://dx.doi.org/10.1016/0008-6223(79)90020-4 [36] A. Sabbaghi, C.H. Wong, X.J. Hu, F.L.Y. Lam, Titanium dioxide nanotube arrays (TNTAs) as an effective electrocatalyst interlayer for sustainable high-energy density lithium-sulfur batteries, J. Alloys Compd. 899 (2022) 163268.http://dx.doi.org/10.1016/j.jallcom.2021.163268 [37] S. Kaewruang, P. Chiochan, N. Phattharasupakun, P. Suktha, K. Kongpatpanich, T. Maihom, J. Limtrakul, M. Sawangphruk, Strong adsorption of lithium polysulfides on ethylenediamine-functionalized carbon fiber paper interlayer providing excellent capacity retention of lithium-sulfur batteries, Carbon 123 (2017) 492–501.http://dx.doi.org/10.1016/j.carbon.2017.07.096 [38] Z. Wei Seh, W. Li, J.J.“. Cha, G. Zheng, Y. Yang, M.T.”. McDowell, P.C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries“>, Nat. Commun. 4”> (2013) 1331.https://www.nature.com/articles/ncomms2327%22%3e [39] G.M. Liang, J.X. Wu, X.Y. Qin, M. Liu, Q. Li, Y.B. He, J.K. Kim, B.H. Li, F.Y. Kang, Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery, ACS Appl. Mater. Interfaces 8 (35) (2016) 23105–23113.https://doi.org/10.1021/acsami.6b07487 [40] J.L. Chen, Z.X. Bian, M.R. Wu, M.Y. Gao, J. Shi, M.T. Duan, X.M. Guo, Y.J. Liu, J.H. Zhang, Q.H. Kong, Preparation of CoSnO3/CNTs/S and its electrochemical performance as cathode material for lithium-sulfur batteries, ChemElectroChem 7(20) (2020) 4209–4217 [41] M.Y. Gao, Z.H. Tang, M.R. Wu, J.L. Chen, Y.C. Xue, X.M. Guo, Y.J. Liu, Q.H. Kong, J.H. Zhang, Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd. 857 (2021) 157554.http://dx.doi.org/10.1016/j.jallcom.2020.157554 [42] M.T. Duan, M.R. Wu, K. Xue, Z.X. Bian, J. Shi, X.M. Guo, F. Cao, J.H. Zhang, Q.H. Kong, F. Zhang, Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater. 28 (10) (2021) 1647–1655.http://dx.doi.org/10.1007/s12613-021-2315-1 |