[1] K.K. Ma, T. Islamoglu, Z.J. Chen, P. Li, M.C. Wasson, Y.W. Chen, Y.F. Wang, G.W. Peterson, J.H. Xin, O.K. Farha, Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber, J. Am. Chem. Soc. 141 (39) (2019) 15626–15633 [2] K. Rumchev, H. Brown, J. Spickett, Volatile organic compounds: Dothey present arisk to our health? Rev. Environ. Health 22 (1) (2007) 39–55 [3] L.H. Xie, X.M. Liu, T. He, J.R. Li, Metal-organic frameworks for the capture of trace aromatic volatile organic compounds, Chem 4 (8) (2018) 1911–1927 [4] C.I. Ezugwu, S.P. Zhang, S.P. Li, S.R. Shi, C.H. Li, F. Verpoort, J.G. Yu, S.W. Liu, Efficient transformative HCHO capture by defective NH2-UiO-66(Zr) at room temperature, Environ. Sci.: Nano 6 (10) (2019) 2931–2936 [5] J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns, Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green, PNAS 115 (17) (2018) 4465–4470 [6] S. Zhang, M. Wang, Z.G. Lu, C. Ma, W.D. Jia, Biomass bricks with excellent indoor formaldehyde capture and transformation performance, ACS Sustain. Chem. Eng. 7 (13) (2019) 11493–11499 [7] S.Y. Geng, J.Y. Wei, S. Jonasson, J. Hedlund, K. Oksman, Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage, ACS Appl. Mater. Interfaces 12 (6) (2020) 7432–7441 [8] T.T. Li, X.X. Cen, H.T. Ren, L.W. Wu, H.K. Peng, W. Wang, B. Gao, C.W. Lou, J.H. Lin, Zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5 capture, ACS Appl. Mater. Interfaces 12 (7) (2020) 8730–8739 [9] B. Zhang, H.W. Chen, Q.H. Hu, L.M. Jiang, Y.Q. Shen, D. Zhao, Z.X. Zhou, CelluMOFs: Green, facile, and flexible metal–organic frameworks for versatile applications, Adv. Funct. Mater. 31 (43) (2021) 2105395 [10] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. 44 (22) (2005) 3358–3393 [11] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, Chem. Soc. Rev. 40 (7) (2011) 3941 [12] N. Janpetch, N. Saito, R. Rujiravanit, Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications, Carbohydr. Polym. 148 (2016) 335–344 [13] Z. Shi, G. O. Phillips, G. Yang, Nanocellulose electroconductive composites, Nanoscale 5 (8) (2013) 3194–3201 [14] Y.A. Chen, P. Pötschke, J. Pionteck, B. Voit, H.S. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 12 (19) (2020) 22088–22098 [15] J. Onwumere, J. Piatek, T. Budnyak, J.H. Chen, S. Budnyk, Z. Karim, T. Thersleff, P. Kuśtrowski, A.P. Mathew, A. Slabon, CelluPhot: Hybrid cellulose-bismuth oxybromide membrane for pollutant removal, ACS Appl. Mater. Interfaces 12 (38) (2020) 42891–42901 [16] Z.G. Hu, Y.X. Wang, S. Farooq, D. Zhao, A highly stable metal–organic framework with optimum aperture size for CO2 capture, AIChE J. 63 (9) (2017) 4103–4114 [17] Z.H. Xiang, S.H. Leng, D.P. Cao, Functional group modification of metal–organic frameworks for CO2 capture, J. Phys. Chem. C 116 (19) (2012) 10573–10579 [18] R. Wang, J.Y. Cao, S.C. Cai, X.M. Yan, J.S. Li, W.M. Yourey, W. Tong, H.L. Tang, MOF@Cellulose derived Co–N–C nanowire network as an advanced reversible oxygen electrocatalyst for rechargeable zinc–air batteries, ACS Appl. Energy Mater. 1 (3) (2018) 1060–1068 [19] S.H. Jhung, N.A. Khan, Z. Hasan, Analogous porous metal–organic frameworks: Synthesis, stability and application in adsorption, CrystEngComm 14 (21) (2012) 7099-7109 [20] Q. Yang, M.Y. Zhang, S.X. Song, B. Yang, Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials, Cellulose 24 (7) (2017) 3051–3060 [21] G.W. Peterson, D.T. Lee, H.F. Barton, T.H. Epps, G.N. Parsons, Fibre-based composites from the integration of metal–organic frameworks and polymers, Nat. Rev. Mater. 6 (7) (2021) 605–621 [22] K.K. Ma, K.B. Idrees, F.A. Son, R. Maldonado, M.C. Wasson, X. Zhang, X.J. Wang, E. Shehayeb, A. Merhi, B.R. Kaafarani, T. Islamoglu, J.H. Xin, O.K. Farha, Fiber composites of metal–organic frameworks, Chem. Mater. 32 (17) (2020) 7120–7140 [23] Z.G. Wang, L. Song, Y.Q. Wang, X.F. Zhang, D.D. Hao, Y. Feng, J.F. Yao, Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications, Chem. Eng. J. 371 (2019) 138–144 [24] J. Park, M. Oh, Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture, Nanoscale 9 (35) (2017) 12850–12854 [25] M. Rose, B. Böhringer, M. Jolly, R. Fischer, S. Kaskel, MOF processing by electrospinning for functional textiles, Adv. Eng. Mater. 13 (4) (2011) 356–360 [26] O. Shekhah, J. Liu, R.A. Fischer, C. Wöll, MOF thin films: Existing and future applications, Chem. Soc. Rev. 40 (2) (2011) 1081 [27] K. Liang, R. Wang, M. Boutter, C.M. Doherty, X. Mulet, J.J. Richardson, Biomimetic mineralization of metal–organic frameworks around polysaccharides, Chem. Commun. 53 (7) (2017) 1249–1252 [28] J.J. Richardson, B.L. Tardy, J.L. Guo, K. Liang, O.J. Rojas, H. Ejima, Continuous metal–organic framework biomineralization on cellulose nanocrystals: Extrusion of functional composite filaments, ACS Sustain. Chem. Eng. 7 (6) (2019) 6287–6294 [29] J.Y. Nie, H.B. Xie, M.Y. Zhang, J.T. Liang, S.X. Nie, W.J. Han, Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel, Carbohydr. Polym. 250 (2020) 116955 [30] R. A. Smaldone, R. S. Forgan, H. Furukawa, J. J. Gassensmith, A. M. Slawin, O. M. Yaghi, J. F. Stoddart, Metal–organic frameworks from edible natural products, Angew. Chem. Int. Ed. 49 (46) (2010) 8630–8634 [31] J.J. Gassensmith, H. Furukawa, R.A. Smaldone, R.S. Forgan, Y.Y. Botros, O.M. Yaghi, J.F. Stoddart, Strong and reversible binding of carbon dioxide in a green metal–organic framework, J. Am. Chem. Soc. 133 (39) (2011) 15312–15315 [32] B. Zhang, J.X. Huang, K.X. Liu, Z.X. Zhou, L.M. Jiang, Y.Q. Shen, D. Zhao, Biocompatible cyclodextrin-based metal–organic frameworks for long-term sustained release of fragrances, Ind. Eng. Chem. Res. 58 (43) (2019) 19767–19777 [33] P. Sundriyal, S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors, ACS Appl. Mater. Interfaces 9 (44) (2017) 38507–38521 [34] R.X. Guo, X.H. Cai, H.W. Liu, Z. Yang, Y.J. Meng, F.J. Chen, Y.J. Li, B.D. Wang, In situ growth of metal–organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal, Environ. Sci. Technol. 53 (5) (2019) 2705–2712 [35] Y.H. Liu, Y.X. Wang, J.X. Huang, Z.X. Zhou, D. Zhao, L.M. Jiang, Y.Q. Shen, Encapsulation and controlled release of fragrances from functionalized porous metal-organic frameworks, AIChE J. 65 (2) (2019) 491–499 [36] W.J. Stroud, J.E. Curry, J.H. Cushman, Capillary condensation and snap-off in nanoscale contacts, Langmuir 17 (3) (2001) 688–698 [37] I. Kritskiy, T. Volkova, A. Surov, I. Terekhova, γ-cyclodextrin-metal organic frameworks as efficient microcontainers for encapsulation of leflunomide and acceleration of its transformation into teriflunomide, Carbohydr. Polym. 216 (2019) 224–230 [38] J. Xu, L. Wu, T. Guo, G.Q. Zhang, C.F. Wang, H.Y. Li, X. Li, V. Singh, W.D. Chen, R. Gref, J.W. Zhang, A “Ship-in-a-Bottle” strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal–organic frameworks, Int. J. Pharm. 556 (2019) 89–96 [39] R.S. Forgan, R.A. Smaldone, J.J. Gassensmith, H. Furukawa, D.B. Cordes, Q.W. Li, C.E. Wilmer, Y.Y. Botros, R.Q. Snurr, A.M.Z. Slawin, J.F. Stoddart, Nanoporous carbohydrate metal–organic frameworks, J. Am. Chem. Soc. 134 (1) (2012) 406–417 [40] M. Liu, C.X. Yan, J.W. Han, Z.Q. Guo, W.H. Zhu, Z.B. Xiao, Y. Wu, J. Huang, pH-activated polymeric profragrances for dual-controllable perfume release, AIChE J. 67 (8) (2021) DOI:10.1002/aic.17265 [41] C.W. Xue, M. Liu, Z.A. Zhang, J.W. Han, C.Y. Wang, L.M. Wang, Z.B. Xiao, W.H. Zhu, Controllable fragrance release mediated by spontaneous hydrogen bonding with POSS–thiourea derivatives, CCS Chem. 2 (6) (2020) 478–487 [42] Z.Y. Dong, Y. Sun, J. Chu, X.Z. Zhang, H.X. Deng, Multivariate metal–organic frameworks for dialing-in the binding and programming the release of drug molecules, J. Am. Chem. Soc. 139 (40) (2017) 14209–14216 [43] H.W. Chen, H.Q. Chen, B. Zhang, L.M. Jiang, Y.Q. Shen, E.G. Fu, D. Zhao, Z.X. Zhou, Tuning the release rate of volatile molecules by pore surface engineering in metal–organic frameworks, Chin. Chem. Lett. 32 (6) (2021) 1988–1992 [44] S. Siddiqua, B.A. Anusha, L.S. Ashwini, P.S. Negi, Antibacterial activity of cinnamaldehyde and clove oil: Effect on selected foodborne pathogens in model food systems and watermelon juice, J. Food Sci. Technol. 52 (9) (2015) 5834–5841 |