[1] S.X. Chen, R.X. Liu, Y.J. Li, R.R. Zhang, C. Zhao, H.G. Tang, C.Z. Qiao, S. Zhang, Relationship of basicity and hydrogen bond properties of ionic liquids with its catalytic performance: Application to synthesis of propylene glycol methyl ether, Catal. Commun. 96 (2017) 69–73.http://dx.doi.org/10.1016/j.catcom.2017.03.018 [2] R. An, S.X. Chen, R.R. Zhang, F. Dai, Z.M. Zhou, C.H. Li, R.X. Liu, W.Z. An, Synthesis of propylene glycol methyl ether catalyzed by imidazole polymer catalyst: Performance evaluation, kinetics study, and process simulation, Chem. Eng. J. 405 (2021) 126636.http://dx.doi.org/10.1016/j.cej.2020.126636 [3] Y.D. Chaniago, A. Hussain, R. Andika, M. Lee, Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture, ACS Sustain. Chem. Eng. 7 (22) (2019) 18677–18689.http://dx.doi.org/10.1021/acssuschemeng.9b05251 [4] G. Veser, Process intensification through heat-integration for high-temperature catalysis. ACS Symposium Series. Washington, DC: American Chemical Society(2005)145–161.https://doi.org/10.1021/bk-2005-0914.ch009 [5] Y.M. Liu, Y. Zhou, W.Q. Gong, Z.M. Li, C.L. Wang, D.J. Tao, Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor, Green Energy Environ. 5 (2) (2020) 147–153.http://dx.doi.org/10.1016/j.gee.2019.09.001 [6] S.N. Zhao, Z.Y. Dong, C.Q. Yao, Z.H. Wen, G.W. Chen, Q. Yuan, Liquid-liquid two-phase flow in ultrasonic microreactors: Cavitation, emulsification, and mass transfer enhancement, AIChE J. 64 (4) (2018) 1412–1423.https://doi.org/10.1002/aic.16010 [7] J. Deng, J.S. Zhang, K. Wang, G.S. Luo, Microreaction technology for synthetic chemistry, Chin. J. Chem. 37 (2) (2019) 161–170.https://doi.org/10.1002/cjoc.201800428 [8] G.J. Harmsen, Reactive distillation: The front-runner of industrial process intensification, Chem. Eng. Process.: Process. Intensif. 46 (9) (2007) 774–780.https://doi.org/10.1016/j.cep.2007.06.005 [9] D. Liu, Z.X. Lin, W.Z. An, R. An, H.Y. Bie, Simulation and energy consumption evaluation of reactive distillation process for ethanolamine production, Chem. Eng. Process. - Process. Intensif. 153 (2020) 107930. http://dx.doi.org/10.1016/j.cep.2020.107930 [10] W.Z. An, Z.X. Lin, J. Chen, J.M. Zhu, Simulation and analysis of a reactive distillation column for removal of water from ethanol-water mixtures, Ind. Eng. Chem. Res. 53 (14) (2014) 6056–6064.http://dx.doi.org/10.1021/ie403906z [11] C.D.F. Karl T. Chuang, Catalytic distillation proprylene glycol methyl ether, US Pat., 2015/0057468 A1 (2015). [12] H.F. Cong, J.P. Murphy, X.G. Li, H. Li, X. Gao, Feasibility evaluation of a novel middle vapor recompression distillation column, Ind. Eng. Chem. Res. 57 (18) (2018) 6317–6329.http://dx.doi.org/10.1021/acs.iecr.8b00038 [13] W. Jang, K. Namgung, H. Lee, H. Mo, J.W. Lee, Enhanced energy savings from simultaneous triple esterification of C4-C6 alcohols in a single reactive distillation column, Ind. Eng. Chem. Res. 59 (5) (2020) 1966–1978.http://dx.doi.org/10.1021/acs.iecr.9b05051 [14] C.T. Cui, X.G. Li, H. Sui, J.S. Sun, Quick decision-making for close-boiling distillation schemes, Ind. Eng. Chem. Res. 56 (17) (2017) 5078–5091.https://doi.org/10.1021/acs.iecr.7b00935 [15] S. Hasebe, M. Noda, I. Hashimoto, Optimal operation policy for total reflux and multi-effect batch distillation systems, Comput. Chem. Eng. 23 (4–5) (1999) 523–532.http://dx.doi.org/10.1016/S0098-1354(98)00290-7 [16] A.K. Jana, Heat integrated distillation operation, Appl. Energy 87 (5) (2010) 1477–1494.http://dx.doi.org/10.1016/j.apenergy.2009.10.014 [17] X.X. Gao, J. Chen, J.K. Tan, Y. Wang, Z.F. Ma, L.M. Yang, Application of mechanical vapor recompression heat pump to double-effect distillation for separating N,N-dimethylacetamide/water mixture, Ind. Eng. Chem. Res. 54 (12) (2015) 3200–3204.http://dx.doi.org/10.1021/ie504664h [18] K.H. Mistry, M.A. Antar, J.H. Lienhard V, An improved model for multiple effect distillation, Desalination Water Treat. 51 (4–6) (2013) 807–821.http://dx.doi.org/10.1080/19443994.2012.703383 [19] P. Palenzuela, L. Roca, G. Zaragoza, D.C. Alarcón-Padilla, L. García-Rodríguez, A. de la Calle, Operational improvements to increase the efficiency of an absorption heat pump connected to a multi-effect distillation unit, Appl. Therm. Eng. 63 (1) (2014) 84–96.http://dx.doi.org/10.1016/j.applthermaleng.2013.10.050 [20] J.T. Zhang, S.R. Liang, X. Feng, A novel multi-effect methanol distillation process, Chem. Eng. Process.: Process. Intensif. 49 (10) (2010) 1031–1037.http://dx.doi.org/10.1016/j.cep.2010.07.003 [21] H.K. Engelien, S. Skogestad, Multi-effect distillation applied to an industrial case study, Chem. Eng. Process.: Process. Intensif. 44 (8) (2005) 819–826.http://dx.doi.org/10.1016/j.cep.2004.06.015 [22] M. di Serio, R. Tesser, A. Dimiccoli, E. Santacesaria, Kinetics of ethoxylation and propoxylation of ethylene glycol catalyzed by KOH, Ind. Eng. Chem. Res. 41 (21) (2002) 5196–5206.https://doi.org/10.1021/ie020082v [23] N.K. Gor, N.A. Mali, S.S. Joshi, Intensified reactive distillation configurations for production of dimethyl ether, Chem. Eng. Process. - Process. Intensif. 149 (2020) 107824.http://dx.doi.org/10.1016/j.cep.2020.107824 [24] A. Hussain, L.Q. Minh, M.A. Qyyum, M. Lee, Design of an intensified reactive distillation configuration for 2-methoxy-2-methylheptane, Ind. Eng. Chem. Res. 57 (1) (2018) 316–328.https://doi.org/10.1021/acs.iecr.7b04624 [25] Y.C. Chen, S.K. Hung, H.Y. Lee, I.L. Chien, Energy-saving designs for separation of a close-boiling 1, 2-propanediol and ethylene glycol mixture, Ind. Eng. Chem. Res. 54 (15) (2015) 3828–3843.https://doi.org/10.1021/ie503922f [26] Y.M. Wu, D.P. Meng, D. Yao, X.Y. Liu, Y. Xu, Z.Y. Zhu, Y.L. Wang, J. Gao, Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation–pervaporation processes for dehydration of n-propanol, ACS Sustainable Chem. Eng. 8 (11) (2020) 4561–4571.https://doi.org/10.1021/acssuschemeng.0c00263 |