[1] A.S. Rifaioglu, H. Atas, M.J. Martin, R. Cetin-Atalay, V. Atalay, T. Doğan, Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases, Brief. Bioinform. 20 (5) (2019) 1878–1912. https://pubmed.ncbi.nlm.nih.gov/30084866/ [2] C. Su, J. Tong, Y.J. Zhu, P. Cui, F. Wang, Network embedding in biomedical data science, Brief. Bioinform. (2018) 2018Dec10. https://pubmed.ncbi.nlm.nih.gov/30535359/ [3] J.M. Stokes, K. Yang, K. Swanson, W.G. Jin, A. Cubillos-Ruiz, N.M. Donghia, C.R. MacNair, S. French, L.A. Carfrae, Z. Bloom-Ackermann, V.M. Tran, A. Chiappino-Pepe, A.H. Badran, I.W. Andrews, E.J. Chory, G.M. Church, E.D. Brown, T.S. Jaakkola, J.J. Collins, A deep learning approach to antibiotic discovery, Cell 180 (4) (2020) 688–702.e13. http://dx.doi.org/10.1016/j.cell.2020.01.021 [4] J.K. Wu, S.H. Wang, L. Zhou, X. Ji, Y.Y. Dai, Y.G. Dang, M. Kraft, Deep-learning architecture in QSPR modeling for the prediction of energy conversion efficiency of solar cells, Ind. Eng. Chem. Res. 59 (42) (2020) 18991–19000. https://doi.org/10.1021/acs.iecr.0c03880 [5] S. Ekins, A.C. Puhl, K.M. Zorn, T.R. Lane, D.P. Russo, J.J. Klein, A.J. Hickey, A.M. Clark, Exploiting machine learning for end-to-end drug discovery and development, Nat. Mater. 18 (5) (2019) 435–441. https://pubmed.ncbi.nlm.nih.gov/31000803/ [6] E. Gawehn, J.A. Hiss, G. Schneider, Deep learning in drug discovery, Mol. Inform. 35 (1) (2016) 3–14. https://pubmed.ncbi.nlm.nih.gov/27491648/ [7] K.P. Bennett, C. Campbell, Support vector machines, SIGKDD Explor. Newsl. 2 (2) (2000) 1–13. https://doi.org/10.1145/380995.380999 [8] G. Tripepi, K.J. Jager, F.W. Dekker, C. Zoccali, Linear and logistic regression analysis, Kidney Int. 73 (7) (2008) 806–810. https://pubmed.ncbi.nlm.nih.gov/18200004/ [9] X.Y. Xia, E.G. Maliski, P. Gallant, D. Rogers, Classification of kinase inhibitors using a Bayesian model, J. Med. Chem. 47 (18) (2004) 4463–4470. https://pubmed.ncbi.nlm.nih.gov/15317458/ [10] R.G. Susnow, S.L. Dixon, Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition, J. Chem. Inf. Comput. Sci. 43 (4) (2003) 1308–1315. https://doi.org/10.1021/ci030283p [11] S.C. Wang, Y.Y. Li, J.M. Wang, L. Chen, L.L. Zhang, H.D. Yu, T.J. Hou, ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage, Mol. Pharm. 9 (4) (2012) 996–1010. https://pubmed.ncbi.nlm.nih.gov/22380484/ [12] J.B.O. Mitchell, Machine learning methods in chemoinformatics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (5) (2014) 468–481. https://pubmed.ncbi.nlm.nih.gov/25285160/ [13] A. Korotcov, V. Tkachenko, D.P. Russo, S. Ekins, Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets, Mol. Pharm. 14 (12) (2017) 4462–4475. https://pubmed.ncbi.nlm.nih.gov/29096442/ [14] A. Koutsoukas, K.J. Monaghan, X.L. Li, J. Huan, Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data, J. Cheminform. 9 (1) (2017) 42. https://pubmed.ncbi.nlm.nih.gov/29086090/ [15] Z. Basrak, A routine for parameter optimization using an accelerated grid-search method, Comput. Phys. Commun. 46 (1) (1987) 149–154. http://dx.doi.org/10.1016/0010-4655(87)90042-7 [16] Y. Bengio, Gradient-based optimization of hyperparameters, Neural Comput. 12 (8) (2000) 1889–1900. https://pubmed.ncbi.nlm.nih.gov/10953243/ [17] Y.F. Xia, C.Z. Liu, Y.Y. Li, N.N. Liu, A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring, Expert Syst. Appl. 78 (2017) 225–241. http://dx.doi.org/10.1016/j.eswa.2017.02.017 [18] J.T. Springenberg, A. Klein, S. Falkner, F. Hutter, Bayesian optimization with robust Bayesian neural networks, Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 2016. [19] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D.D. Cox, Hyperopt: a Python library for model selection and hyperparameter optimization, Comput. Sci. Disc. 8 (1) (2015) 014008. https://doi.org/10.1088/1749-4699/8/1/014008 [20] F.A. Quintero, S.J. Patel, F. Muñoz, M. Sam Mannan, Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system, Ind. Eng. Chem. Res. 51 (49) (2012) 16101–16115. https://doi.org/10.1021/ie301079r [21] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (5) (2010) 742–754. https://pubmed.ncbi.nlm.nih.gov/20426451/ [22] R. Caruana, A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd international conference on Machine learning, Pittsburgh Pennsylvania, USA, 2006. [23] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 (1) (1960) 37–46. https://doi.org/10.1177/001316446002000104 [24] B.W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta 405 (2) (1975) 442–451. https://pubmed.ncbi.nlm.nih.gov/1180967/ [25] B. Shahriari, K. Swersky, Z.Y. Wang, R.P. Adams, N. de Freitas, Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE 104 (1) (2016) 148–175. https://doi.org/10.1109/jproc.2015.2494218 |