Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 142-154.DOI: 10.1016/j.cjche.2022.03.009
• Review • Previous Articles Next Articles
Monique Juna L. Leite1, Ingrid Ramalho Marques2, Mariane Carolina Proner1, Pedro H.H. Araújo2, Alan Ambrosi1, Marco Di Luccio1
Received:
2021-09-27
Revised:
2022-03-10
Online:
2023-04-08
Published:
2023-01-28
Contact:
Marco Di Luccio,E-mail:di.luccio@ufsc.br
Supported by:
Monique Juna L. Leite1, Ingrid Ramalho Marques2, Mariane Carolina Proner1, Pedro H.H. Araújo2, Alan Ambrosi1, Marco Di Luccio1
通讯作者:
Marco Di Luccio,E-mail:di.luccio@ufsc.br
基金资助:
Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154.
Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. 中国化学工程学报, 2023, 53(1): 142-154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.03.009
[1] Y.K. Ong, G.M. Shi, N.L. le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57 (2016) 1–31. [2] S.L. Wee, C.T. Tye, S. Bhatia, Membrane separation process—Pervaporation through zeolite membrane, Sep. Purif. Technol. 63 (3) (2008) 500–516. [3] F. Lipnizki, R.W. Field, P.K. Ten, Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci. 153 (2) (1999) 183–210. [4] R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data, J. Membr. Sci. 348 (1–2) (2010) 346–352. [5] B.K. Dutta, W.C. Ji, S.K. Sikdar, Pervaporation: Principles and applications, Sep. Purif. Methods 25 (2) (1996) 131–224. [6] X.X. Cheng, F.S. Pan, M.R. Wang, W.D. Li, Y.M. Song, G.H. Liu, H. Yang, B.X. Gao, H. Wu, Z.Y. Jiang, Hybrid membranes for pervaporation separations, J. Membr. Sci. 541 (2017) 329–346. [7] W. Zhang, Y.X. Xu, Z.J. Yu, S. Lu, X.P. Wang, Separation of acetic acid/water mixtures by pervaporation with composite membranes of sodium alginate active layer and microporous polypropylene substrate, J. Membr. Sci. 451 (2014) 135–147. [8] Q. Liu, Y.K. Li, Q.Q. Li, G.Z. Liu, G.P. Liu, W.Q. Jin, Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures, Sep. Purif. Technol. 214 (2019) 2–10. [9] W.Y. Tang, H. Lou, Y.F. Li, X.B. Kong, Y.H. Wu, X.H. Gu, Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions, J. Membr. Sci. 581 (2019) 93–104. [10] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188 (2017) 24–37. [11] S. Moulik, V. Bukke, S.C. Sajja, S. S, Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation, Carbohydr. Polym. 193 (2018) 28–38. [12] Y.Q. Dong, H.B. Guo, Z.X. Su, W.J. Wei, X.Q. Wu, Pervaporation separation of benzene/cyclohexane through AAOM-ionic liquids/polyurethane membranes, Chem. Eng. Process. Process. Intensif. 89 (2015) 62–69. [13] S. Han, Y.W. Li, S.T. Bai, L. Zhang, W.X. Li, W.H. Xing, Development of stable and active PVA-PSSA/SA-PVA catalytic composite membrane for esterification enhancement, J. Appl. Polym. Sci. 135 (30) (2018) 46514. [14] F.U. Nigiz, A comparative study on the synthesis of ethyl propionate in a pervaporation membrane reactor, Chem. Eng. Process. Process. Intensif. 128 (2018) 173–179. [15] M.H. Zhu, Z.J. Feng, X.M. Hua, H.L. Hu, S.L. Xia, N. Hu, Z. Yang, I. Kumakiri, X.S. Chen, H. Kita, Application of a mordenite membrane to the esterification of acetic acid and alcohol using sulfuric acid catalyst, Microporous Mesoporous Mater. 233 (2016) 171–176. [16] Y.W. Li, S. Han, L. Zhang, W.X. Li, W.H. Xing, Fabrication and modeling of catalytic membrane for removing water in esterification, J. Membr. Sci. 579 (2019) 120–130. [17] S.T. Bo, L. Zhang, S. Han, Y.W. Li, W.X. Li, W.H. Xing, Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis, J. Membr. Sci. 563 (2018) 10–21. [18] W.P. Silvestre, C. Baldasso, I.C. Tessaro, Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation, Carbohydr. Polym. 247 (2020) 116676. [19] B. Hassankhan, A. Raisi, Separation of isobutanol/water mixtures by hybrid distillation–pervaporation process: Modeling, simulation and economic comparison, Chem. Eng. Process. Process. Intensif. 155 (2020) 108071. [20] W.H. Qing, J.Q. Wu, N. Chen, L.L. Liu, Y.J. Deng, W.D. Zhang, A genuine in situ water removal at a molecular lever by an enhanced esterification–pervaporation coupling in a catalytically active membrane reactor, Chem. Eng. J. 323 (2017) 434–443. [21] Z.Q. Cao, C.J. Xia, W. Jia, W.H. Qing, W.D. Zhang, Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation–pervaporation coupling process, J. Membr. Sci. 595 (2020) 117485. [22] Q.G. Zhang, Q.L. Liu, A.M. Zhu, Y. Xiong, L. Ren, Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol, J. Membr. Sci. 335 (1–2) (2009) 68–75. [23] H. Abdallah, A review on catalytic membranes production and applications, Bull. Chem. React. Eng. Catal. 12 (2) (2017) 136. [24] W.H. Qing, X.H. Li, S.L. Shao, X.N. Shi, J.Q. Wang, Y. Feng, W. Zhang, W.D. Zhang, Polymeric catalytically active membranes for reaction–separation coupling: A review, J. Membr. Sci. 583 (2019) 118–138. [25] Reports and Data, Aroma ingredients market by type of fragrance (floral, fruity, savory), by chemical compounds (esters, terpenes, alcohols), by type (natural ingredients, synthetic ingredients), by applications (cosmetics & toiletries, foods & drinks), and segment forecas, September, 2019[2020-06-18]. [26] A.G.A. SÁ, A.C. de Meneses, P.H.H. de Araújo, D. de Oliveira, A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries, Trends Food Sci. Technol. 69 (2017) 95–105. [27] G.N. Pereira, J.P. Holz, P.P. Giovannini, J.V. Oliveira, D. de Oliveira, L.A. Lerin, Enzymatic esterification for the synthesis of butyl stearate and ethyl stearate, Biocatal. Agric. Biotechnol. 16 (2018) 373–377. [28] Z. Jin, J. Ntwali, S.Y. Han, S.P. Zheng, Y. Lin, Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor, J. Biotechnol. 159 (1–2) (2012) 108–114. [29] C.R. Khudsange, K.L. Wasewar, Process intensification of esterification reaction for the production of propyl butyrate by pervaporation, Resour. Effic. Technol. 3 (1) (2017) 88–93. [30] Y. Zhong, Q. Deng, P.X. Zhang, J. Wang, R. Wang, Z.L. Zeng, S.G. Deng, Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties, Fuel 240 (2019) 270–277. [31] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Coupling of in situ pervaporation for the enhanced esterification of propionic acid with isobutyl alcohol over cenosphere based catalyst, Chem. Eng. Process. Process. Intensif. 119 (2017) 16–24. [32] M.N.B. Mohiddin, Y.H. Tan, Y.X. Seow, J. Kansedo, N.M. Mubarak, M.O. Abdullah, Y.S. Chan, M. Khalid, Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review, J. Ind. Eng. Chem. 98 (2021) 60–81. [33] P. Prinsen, R. Luque, C. González-Arellano, Zeolite catalyzed palmitic acid esterification, Microporous Mesoporous Mater. 262 (2018) 133–139. [34] Z.T. Alismaeel, A.S. Abbas, T.M. Albayati, A.M. Doyle, Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts, Fuel 234 (2018) 170–176. [35] S.D. Le, S. Nishimura, K. Ebitani, Direct esterification of succinic acid with phenol using zeolite beta catalyst, Catal. Commun. 122 (2019) 20–23. [36] A. Patel, V. Brahmkhatri, N. Singh, Biodiesel production by esterification of free fatty acid over sulfated zirconia, Renew. Energy 51 (2013) 227–233. [37] D. Rattanaphra, A.P. Harvey, A. Thanapimmetha, P. Srinophakun, Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia, Renew. Energy 36 (10) (2011) 2679–2686. [38] Q.H. Yang, Z.H. Ma, J.Z. Ma, J. Nie, Mesoporous silica supported water-stable perfluorobutylsulfonylimide and its catalytic applications in esterification, Microporous Mesoporous Mater. 172 (2013) 51–60. [39] I.K. Mbaraka, D.R. Radu, V.S.Y. Lin, B.H. Shanks, Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid, J. Catal. 219 (2) (2003) 329–336. [40] S. Korkmaz, Y. Salt, A. Hasanoglu, S. Ozkan, I. Salt, S. Dincer, Pervaporation membrane reactor study for the esterification of acetic acid and isobutanol using polydimethylsiloxane membrane, Appl. Catal. A Gen. 366 (1) (2009) 102–107. [41] C. Cannilla, G. Bonura, F. Costa, F. Frusteri, Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration, Appl. Catal. A Gen. 566 (2018) 121–129. [42] S. Khajavi, J.C. Jansen, F. Kapteijn, Application of a sodalite membrane reactor in esterification—Coupling reaction and separation, Catal. Today 156 (3–4) (2010) 132–139. [43] A. Hasanoğlu, Y. Salt, S. Keleşer, S. Dinçer, The esterification of acetic acid with ethanol in a pervaporation membrane reactor, Desalination 245 (1–3) (2009) 662–669. [44] R.M.A. Saboya, J.A. Cecilia, C. García-Sancho, A.V. Sales, F.M.T. de Luna, E. Rodríguez-Castellón, C.L. Cavalcante Jr, Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts, Ind. Crops Prod. 104 (2017) 52–61. [45] N.R.M. Sturt, S.S. Vieira, F.C.C. Moura, Catalytic activity of sulfated niobium oxide for oleic acid esterification, J. Environ. Chem. Eng. 7 (1) (2019) 102866. [46] M. Zare, M.T. Golmakani, M. Niakousari, Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques, LWT 101 (2019) 214–219. [47] A.C. de Meneses, A.G. Almeida Sá, L.A. Lerin, M.L. Corazza, P.H.H. de Araújo, C. Sayer, D. de Oliveira, Benzyl butyrate esterification mediated by immobilized lipases: Evaluation of batch and fed-batch reactors to overcome lipase-acid deactivation, Process. Biochem. 78 (2019) 50–57. [48] S.H.Y.S. Abdullah, N.H.M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production, Renew. Sustain. Energy Rev. 70 (2017) 1040–1051. [49] L.L. Ma, E.M. Lv, L.X. Du, Y. Han, J. Lu, J.C. Ding, A flow-through tubular catalytic membrane reactor using zirconium sulfate tetrahydrate-impregnated carbon membranes for acidified oil esterification, J. Energy Inst. 90 (6) (2017) 875–883. [50] S. Assabumrungrat, J. Phongpatthanapanich, P. Praserthdam, T. Tagawa, S. Goto, Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: Effect of continuous-flow modes, Chem. Eng. J. 95 (1–3) (2003) 57–65. [51] R.Z. Wang, G.Z. Chen, H. Qin, H.Y. Cheng, L.F. Chen, Z.W. Qi, Systematic screening of bifunctional ionic liquid for intensifying esterification of methyl heptanoate in the reactive extraction process, Chem. Eng. Sci. 246 (2021) 116888. [52] R. Castro-Muñoz, Pervaporation: The emerging technique for extracting aroma compounds from food systems, J. Food Eng. 253 (2019) 27–39. [53] A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects, Renew. Sustain. Energy Rev. 105 (2019) 427–443. [54] Z. Findrik, G. Németh, Đ. Vasić-Rački, K. Bélafi-Bakó, Z. Csanádi, L. Gubicza, Pervaporation-aided enzymatic esterifications in non-conventional media, Process. Biochem. 47 (12) (2012) 1715–1722. [55] J.H. Chen, J.Z. Zheng, Q.L. Liu, H.X. Guo, W. Weng, S.X. Li, Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11), J. Membr. Sci. 429 (2013) 206–213. [56] Q.G. Zhang, Q.L. Liu, Z.Y. Jiang, Y. Chen, Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci. 287 (2) (2007) 237–245. [57] K. Sunitha, S.V. Satyanarayana, S. Sridhar, Phosphorylated chitosan membranes for the separation of ethanol–water mixtures by pervaporation, Carbohydr. Polym. 87 (2) (2012) 1569–1574. [58] P.D. Chapman, T. Oliveira, A.G. Livingston, K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci. 318 (1–2) (2008) 5–37. [59] X.S. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res. 36 (4) (1997) 1048–1066. [60] G. Jyoti, A. Keshav, J. Anandkumar, Review on pervaporation: Theory, membrane performance, and application to intensification of esterification reaction, J. Eng. 2015 (2015) 927068. [61] H. Kita, S. Sasaki, K. Tanaka, K.I. Okamoto, M. Yamamoto, Esterification of carboxylic acid with ethanol accompanied by pervaporation, Chem. Lett. 17 (12) (1988) 2025–2028. [62] M.T. Sanz, J. Gmehling, Esterification of acetic acid with isopropanol coupled with pervaporation, Chem. Eng. J. 123 (1–2) (2006) 1–8. [63] P. Delgado, M.T. Sanz, S. Beltrán, L.A. Núñez, Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation, Chem. Eng. J. 165 (2) (2010) 693–700. [64] E. Ameri, A. Moheb, S. Roodpeyma, Vapor-permeation-aided esterification of isopropanol/propionic acid using NaA and PERVAP® 2201 membranes, Chem. Eng. J. 162 (1) (2010) 355–363. [65] S. Korkmaz, Y. Salt, S. Dincer, Esterification of acetic acid and isobutanol in a pervaporation membrane reactor using different membranes, Ind. Eng. Chem. Res. 50 (20) (2011) 11657–11666. [66] L.L. Ma, Y. Han, K.A. Sun, J. Lu, J.C. Ding, Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology, Energy Convers. Manag. 98 (2015) 46–53. [67] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Enhancement of esterification conversion using pervaporation membrane reactor, Resour. Effic. Technol. 2 (2016) S47–S52. [68] A. Shameli, E. Ameri, Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol, Chem. Eng. J. 309 (2017) 381–396. [69] S.H. Shuit, S.H. Tan, Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method, Energy Convers. Manag. 201 (2019) 112110. [70] L. Zhang, Y.W. Li, Q. Liu, W.X. Li, W.H. Xing, Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation, J. Membr. Sci. 584 (2019) 268–281. [71] W.D. Zhang, W.H. Qing, N. Chen, Z.Q. Ren, J.R. Chen, W. Sun, Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes, J. Membr. Sci. 451 (2014) 285–292. [72] F. Ugur Nigiz, Comparative study on use of pervaporation membrane reactor for lauric acid —Methanol esterification, Sep. Purif. Technol. 264 (2021) 118443. [73] Z.Q. Jia, G.R. Wu, Metal–organic frameworks based mixed matrix membranes for pervaporation, Microporous Mesoporous Mater. 235 (2016) 151–159. [74] B. van der Bruggen, P. Luis, Pervaporation as a tool in chemical engineering: A new era? Curr. Opin. Chem. Eng. 4 (2014) 47–53. [75] F.U. Nigiz, N.D. Hilmioglu, Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane, React. Kinetics Mech. Catal. 118 (2) (2016) 557–575. [76] M.O. David, Q.T. Nguyen, J. Néel, Pervaporation membranes endowed with catalytic properties, based on polymer blends, J. Membr. Sci. 73 (2–3) (1992) 129–141. [77] R. Kancherla, S. Nazia, S. Kalyani, S. Sridhar, Modeling and simulation for design and analysis of membrane-based separation processes, Comput. Chem. Eng. 148 (2021) 107258. [78] Q.L. Liu, H.F. Chen, Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation, J. Membr. Sci. 196 (2) (2002) 171–178. [79] T.F. Ceia, A.G. Silva, C.S. Ribeiro, J.V. Pinto, M.H. Casimiro, A.M. Ramos, J. Vital, PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor, Catal. Today 236 (2014) 98–107. [80] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, J. Membr. Sci. 287 (2) (2007) 162–179. [81] V.S. Praptowidodo, Influence of swelling on water transport through PVA-based membrane, J. Mol. Struct. 739 (1–3) (2005) 207–212. [82] S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. B Eng. 161 (2019) 320–327. [83] M.A. Zulfikar, A.W. Mohammad, A.A. Kadhum, N. Hilal, Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane, Mater. Sci. Eng. A 452-453 (2007) 422–426. [84] F.U. Nigiz, H. Dogan, N.D. Hilmioglu, Pervaporation of ethanol/water mixtures using clinoptilolite and 4A filled sodium alginate membranes, Desalination 300 (2012) 24–31. [85] A.V. Penkova, S.F.A. Acquah, M.E. Dmitrenko, M.P. Sokolova, M.E. Mikhailova, E.S. Polyakov, S.S. Ermakov, D.A. Markelov, D. Roizard, Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles, Mater. Des. 96 (2016) 416–423. [86] Y.S. Zhu, H.F. Chen, Pervaporation separation and pervaporation–esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate, J. Membr. Sci. 138 (1) (1998) 123–134. [87] S.G. Adoor, L.S. Manjeshwar, S.D. Bhat, T.M. Aminabhavi, Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid, J. Membr. Sci. 318 (1–2) (2008) 233–246. [88] G. Yang, Z.L. Xie, M. Cran, D. Ng, S. Gray, Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering, J. Membr. Sci. 579 (2019) 40–51. [89] Y.K. Lin, V.H. Nguyen, J.C.C. Yu, C.W. Lee, Y.H. Deng, J.C.S. Wu, K.C.W. Wu, K.L. Tung, C.L. Chen, Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes, J. Taiwan Inst. Chem. Eng. 79 (2017) 23–30. [90] Z.L. Xie, M. Hoang, D. Ng, C. Doherty, A. Hill, S. Gray, Effect of heat treatment on pervaporation separation of aqueous salt solution using hybrid PVA/MA/TEOS membrane, Sep. Purif. Technol. 127 (2014) 10–17. [91] L.Y. Wang, J.D. Li, Y.Z. Lin, C.X. Chen, Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/poly(vinyl alcohol) blend membranes, J. Membr. Sci. 305 (1–2) (2007) 238–246. [92] M.S. Jyothi, K.R. Reddy, K. Soontarapa, S. Naveen, A.V. Raghu, R.V. Kulkarni, D.P. Suhas, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, Membranes for dehydration of alcohols via pervaporation, J. Environ. Manage. 242 (2019) 415–429. [93] G. Odian, Types of polymers and polymerizations, In: Principles of Polymerization (4th ed.), John Wiley & Sons, New Jersey, 2004. [94] K.W. Böddeker, Terminology in pervaporation, J. Membr. Sci. 51 (3) (1990) 259–272. [95] H.H. Nijhuis, M.H.V. Mulder, C.A. Smolders, Selection of elastomeric membranes for the removal of volatile organics from water, J. Appl. Polym. Sci. 47 (12) (1993) 2227–2243. [96] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45 (8) (2012) 3298–3311. [97] W.D. Zhang, W.H. Qing, Z.Q. Ren, W. Li, J.R. Chen, Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor, Bioresour. Technol. 172 (2014) 16–21. [98] D. Unlu, N.D. Hilmioglu, Pervaporation catalytic membrane reactor application over functional chitosan membrane, J. Membr. Sci. 559 (2018) 138–147. [99] R. Castro-Muñoz, Ó. de la Iglesia, V. Fíla, C. Téllez, J. Coronas, Pervaporation-assisted esterification reactions by means of mixed matrix membranes, Ind. Eng. Chem. Res. 57 (47) (2018) 15998–16011. [100] P. Kumar, V. Bansal, K.H. Kim, E.E. Kwon, Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment, J. Ind. Eng. Chem. 62 (2018) 130–145. [101] H.S. Sun, de Sun, X.M. Shi, B.B. Li, D.M. Yue, R. Xiao, P. Ren, J.H. Zhang, PVA/SO42--AAO difunctional catalytic-pervaporation membranes: Preparation and characterization, Sep. Purif. Technol. 241 (2020) 116739. [102] D. Unlu, N.D. Hilmioglu, Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2·4H2O coated chitosan membrane, J. Chem. Technol. Biotechnol. 91 (1) (2016) 122–130. [103] X.H. Ma, X. Wen, S.W. Gu, Z.L. Xu, J.L. Zhang, Preparation and characterization of catalytic TiO2-SPPESK-PES nanocomposite membranes and kinetics analysis in esterification, J. Membr. Sci. 430 (2013) 62–69. [104] S. Sorribas, A. Kudasheva, E. Almendro, B. Zornoza, Ó. de la Iglesia, C. Téllez, J. Coronas, Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1, Chem. Eng. Sci. 124 (2015) 37–44. [105] Ó. de la Iglesia, S. Sorribas, E. Almendro, B. Zornoza, C. Téllez, J. Coronas, Metal–organic framework MIL-101(Cr) based mixed matrix membranes for esterification of ethanol and acetic acid in a membrane reactor, Renew. Energy 88 (2016) 12–19. [106] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem. 19 (2) (2013) 375–393. [107] G.X. Dong, H.Y. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1 (15) (2013) 4610. [108] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Pervaporation-assisted esterification of caproic acid with isobutanol in conventional, in situ, and ex situ reactors, Chem. Eng. Technol. 42 (5) (2019) 1002–1010. [109] Y.W. Li, L. Zhang, W.X. Li, W.H. Xing, Optimization of dual-functional membrane and application for esterification enhancement, Chem. Eng. Process. Process.Intensif. 139 (2019) 103–112. [110] M. Pang, S.T. Jiang, H.J. Zheng, Synthesis of phytosterol esters of oleic acid by catalysis of Zr(SO4)2·4H2O under solvent-free condition, Adv. Mater. Res. 236-238 (2011) 2510–2515. [111] R.L. Guo, X. Fang, H. Wu, Z.Y. Jiang, Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane, J. Membr. Sci. 322 (1) (2008) 32–38. [112] M. Saraswathi, K.M. Rao, M.N. Prabhakar, C.V. Prasad, K. Sudakar, H.M.P.N. Kumar, M. Prasad, K.C. Rao, M.C.S. Subha, Pervaporation studies of sodium alginate (SA)/dextrin blend membranes for separation of water and isopropanol mixture, Desalination 269 (1–3) (2011) 177–183. [113] B.X. Gao, Z.Y. Jiang, C.H. Zhao, H. Gomaa, F.S. Pan, Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers, J. Membr. Sci. 492 (2015) 230–241. [114] S.V. Kononova, A.V. Volod'ko, V.A. Petrova, E.V. Kruchinina, Y.G. Baklagina, E.A. Chusovitin, Y.A. Skorik, Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan, Carbohydr. Polym. 181 (2018) 86–92. [115] D. Achari, P. Rachipudi, S. Naik, R. Karuppannan, M. Kariduraganavar, Polyelectrolyte complex membranes made of chitosan—PSSAMA for pervaporation separation of industrially important azeotropic mixtures, J. Ind. Eng. Chem. 78 (2019) 383–395. [116] Q. Zhao, Q.F. An, Y.L. Ji, J.W. Qian, C.J. Gao, Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications, J. Membr. Sci. 379 (1–2) (2011) 19–45. [117] A. El-Gendi, H. Abdallah, A. Amin, S.K. Amin, Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination, J. Mol. Struct. 1146 (2017) 14–22. [118] E.T. Saw, K.L. Ang, W. He, X.C. Dong, S. Ramakrishna, Molecular sieve ceramic pervaporation membranes in solvent recovery: A comprehensive review, J. Environ. Chem. Eng. 7 (5) (2019) 103367. [119] L.M. Vane, Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation, J. Chem. Technol. Biotechnol. 94 (2) (2019) 343–365. [120] W.X. Li, W.W. Liu, W.H. Xing, N.P. Xu, Esterification of acetic acid and n-propanol with vapor permeation using NaA zeolite membrane, Ind. Eng. Chem. Res. 52 (19) (2013) 6336–6342. [121] S. Khajavi, F. Kapteijn, J.C. Jansen, Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation, J. Membr. Sci. 299 (1–2) (2007) 63–72. [122] K. Tanaka, R. Yoshikawa, C. Ying, H. Kita, K.I. Okamoto, Application of zeolite membranes to esterification reactions, Catal. Today 67 (1–3) (2001) 121–125. [123] W. Xu, J.W. Xu, L.J. Gao, G.M. Xiao, Preparation and characterization of inorganic acid catalytic membrane for biodiesel production from oleic acid, Asia Pac.J. Chem. Eng. 10 (6) (2015) 851–857. [124] R.W. van Gemert, F.P. Cuperus, Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation, J. Membr. Sci. 105 (3) (1995) 287–291. [125] G. Dudek, M. Krasowska, R. Turczyn, A. Strzelewicz, D. Djurado, S. Pouget, Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol, Chem. Eng. Res. Des. 144 (2019) 483–493. [126] Y.Y. Gu, C. Emin, J.C. Remigy, I. Favier, M. Gómez, R.D. Noble, D.L. Gin, J. Macanás, B. Domènech, J.F. Lahitte, Hybrid catalytic membranes: Tunable and versatile materials for fine chemistry applications, Mater. Today Proc. 3 (2) (2016) 419–423. [127] T.A. Peters, N.E. Benes, J.T.F. Keurentjes, Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol, Appl. Catal. A Gen. 317 (1) (2007) 113–119. [128] P.P. Lu, Z.L. Xu, X.H. Ma, Y. Cao, Preparation and characterization of perfluorosulfonic acid nanofiber membranes for pervaporation-assisted esterification, Ind. Eng. Chem. Res. 52 (24) (2013) 8149–8156. [129] W.Y. Shi, M.X. Yang, H.B. Li, R. Zhou, H.X. Zhang, Preparation and characterization of sulfonated poly (ether sulfone) (SPES)/phosphotungstic acid (PWA) hybrid membranes for biodiesel production, Catal. Lett. 145 (8) (2015) 1581–1590. [130] H.L. Zhang, X. Luo, K.Q. Shi, T. Wu, F. He, H.Q. Yang, S.S. Zhang, C. Peng, Nanocarbon-based catalysts for esterification: Effect of carbon dimensionality and synergistic effect of the surface functional groups, Carbon 147 (2019) 134–145. [131] W.Y. Shi, H.B. Li, R. Zhou, X.H. Qin, H.X. Zhang, Y.H. Su, Q.Y. Du, Preparation and characterization of phosphotungstic acid/PVA nanofiber composite catalytic membranes via electrospinning for biodiesel production, Fuel 180 (2016) 759–766. [132] M.S. Li, W. Zhang, S.Y. Zhou, Y.J. Zhao, Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification, Sep. Purif. Technol.230 (2020) 115746. [133] A.H. van Pelt, O.A. Simakova, S.M. Schimming, J.L. Ewbank, G.S. Foo, E.A. Pidko, E.J.M. Hensen, C. Sievers, Stability of functionalized activated carbon in hot liquid water, Carbon 77 (2014) 143–154. [134] F. Ugur Nigiz, N. Durmaz Hilmioglu, A study on composite catalytic membrane manufacturing based on sodium alginate and lipase to be used in a pervaporation reactor, Res. Chem. Intermed. 43 (2) (2017) 1149–1163. [135] M.L. Zhu, B.Q. He, W.Y. Shi, Y.H. Feng, J.C. Ding, J.X. Li, F.D. Zeng, Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production, Fuel 89 (9) (2010) 2299–2304. [136] S.H. Ali, A. Tarakmah, S.Q. Merchant, T. Al-Sahhaf, Synthesis of esters: Development of the rate expression for the Dowex 50 Wx8-400 catalyzed esterification of propionic acid with 1-propanol, Chem. Eng. Sci. 62 (12) (2007) 3197–3217. [137] H. Li, P.S. Bhadury, B.A. Song, S. Yang, Immobilized functional ionic liquids: Efficient, green, and reusable catalysts, RSC Adv. 2 (33) (2012) 12525. [138] Y. Leng, J. Wang, D.R. Zhu, X.Q. Ren, H.Q. Ge, L. Shen, Heteropolyanion-based ionic liquids: Reaction-induced self-separation catalysts for esterification, Angew. Chem.Int. Ed. 48 (1) (2009) 168–171. [139] D. Lu, J.W. Zhao, Y. Leng, P.P. Jiang, C.J. Zhang, Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate, Catal. Commun. 83 (2016) 27–30. [140] Z.W. Wu, C. Chen, Q.R. Guo, B.X. Li, Y.G. Que, L. Wang, H. Wan, G.F. Guan, Novel approach for preparation of poly (ionic liquid) catalyst with macroporous structure for biodiesel production, Fuel 184 (2016) 128–135. [141] W.H. Qing, J.Q. Wu, Y.J. Deng, L.L. Liu, W.D. Zhang, A novel catalytically active membrane with highly porous catalytic layer for the conversion enhancement of esterification: Focusing on the reduction of mass transfer resistance of the catalytic layer, J. Membr. Sci. 539 (2017) 359–367. |
[1] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[7] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[8] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[9] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[10] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[11] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[12] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[13] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[14] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[15] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||