Chinese Journal of Chemical Engineering ›› 2023, Vol. 60 ›› Issue (8): 90-98.DOI: 10.1016/j.cjche.2023.02.001
Previous Articles Next Articles
Wensheng Li1,2,3, Liangyuan Qi1, Daolin Ye2,3, Wei Cai1,3, Weiyi Xing1,3
Received:
2022-08-31
Revised:
2023-01-25
Online:
2023-10-28
Published:
2023-08-28
Contact:
Weiyi Xing,E-mail:xingwy@ustc.edu.cn
Supported by:
Wensheng Li1,2,3, Liangyuan Qi1, Daolin Ye2,3, Wei Cai1,3, Weiyi Xing1,3
通讯作者:
Weiyi Xing,E-mail:xingwy@ustc.edu.cn
基金资助:
Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98.
Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98.
[1] E.D. Weil, S.V. Levchik, Flame retardants for polystyrenes in commercial use or development, J. Fire Sci. 25 (3) (2007) 241-265. [2] X. Wang, P. Zhang, Z.C. Huang, W.Y. Xing, L. Song, Y. Hu, Effect of aluminum diethyl phosphinate on the thermal stability and flame retardancy of flexible polyurethane foams, Fire Saf. J. 106 (2019) 72-79. [3] W.Z. Hu, B. Yu, S.D. Jiang, L. Song, Y. Hu, B.B. Wang, Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene, J. Hazard. Mater. 300 (2015) 58-66. [4] Y.B. Hou, W.Z. Hu, Z. Gui, Y. Hu, Preparation of metal-organic frameworks and their application as flame retardants for polystyrene, Ind. Eng. Chem. Res. 56 (8) (2017) 2036-2045. [5] Y.N. Li, Q.X. Zhou, Y.Y. Wang, X.J. Xie, Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants, Chemosphere 82 (2) (2011) 204-209. [6] L.N. Chang, M. Jaafar, W.S. Chow, Thermal behavior and flammability of epoxy/glass fiber composites containing clay and decabromodiphenyl oxide, J. Therm. Anal. Calorim. 112 (3) (2013) 1157-1164. [7] W. Cai, B.B. Wang, X. Wang, Y.L. Zhu, Z.X. Li, Z.M. Xu, L. Song, W.Z. Hu, Y. Hu, Recent progress in two-dimensional nanomaterials following graphene for improving fire safety of polymer (nano) composites, Chin. J. Polym. Sci. 39 (8) (2021) 935-956. [8] Y.B. Hou, Z.M. Xu, F.C. Chu, Z. Gui, L. Song, Y. Hu, W.Z. Hu, A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites, Compos. B Eng. 221 (2021) 109014. [9] X. Wang, W. Cai, D.L. Ye, Y.L. Zhu, M.L. Cui, J.C. Xi, J.J. Liu, W.Y. Xing, Bio-based polyphenol tannic acid as universal linker between metal oxide nanoparticles and thermoplastic polyurethane to enhance flame retardancy and mechanical properties, Compos. B Eng. 224 (2021) 109206. [10] Z.M. Xu, W.Y. Xing, Y.B. Hou, B. Zou, L.F. Han, W.Z. Hu, Y. Hu, The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite, Combust. Flame 226 (2021) 108-116. [11] T. Zhang, J.C. Xi, S.L. Qiu, B.W. Zhang, Z.L. Luo, W.Y. Xing, L. Song, Y. Hu, Facilely produced highly adhered, low thermal conductivity and non-combustible coatings for fire safety, J. Colloid Interface Sci. 604 (2021) 378-389. [12] Z.T. Yin, J.Y. Lu, N.N. Hong, W.H. Cheng, P.F. Jia, H.J. Wang, W.Z. Hu, B.B. Wang, L. Song, Y. Hu, Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties, J. Colloid Interface Sci. 607 (2022) 1300-1312. [13] D. Hoang, J. Kim, Synthesis and applications of biscyclic phosphorus flame retardants, Polym. Degrad. Stab. 93 (1) (2008) 36-42. [14] J.C. Liu, Z.L. Yu, H.B. Chang, Y.B. Zhang, Y.Z. Shi, J. Luo, B.L. Pan, C. Lu, Thermal degradation behavior and fire performance of halogen-free flame-retardant high impact polystyrene containing magnesium hydroxide and microencapsulated red phosphorus, Polym. Degrad. Stab. 103 (2014) 83-95. [15] W.W. Guo, X. Wang, Y. Pan, W. Cai, W.Y. Xing, L. Song, Y. Hu, Polyaniline-coupled graphene/nickel hydroxide nanohybrids as flame retardant and smoke suppressant for epoxy composites, Polym. Adv. Technol. 30 (8) (2019) 1959-1967. [16] D. Price, L.K. Cunliffe, K.J. Bullett, T.R. Hull, G.J. Milnes, J.R. Ebdon, B.J. Hunt, P. Joseph, Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems, Polym. Degrad. Stab. 92 (6) (2007) 1101-1114. [17] S. Zhang, Y.X. Yan, W.J. Wang, X.Y. Gu, H.F. Li, J.H. Li, J. Sun, Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites, Polym. Degrad. Stab. 147 (2018) 142-150. [18] X.D. Qian, K.S. Zheng, L.G. Lu, X.B. Wang, H.Y. Wang, A novel flame retardant containing calixarene and DOPO structures: Preparation and its application on the fire safety of polystyrene, Polym. Adv. Technol. 29 (11) (2018) 2715-2723. [19] Y.J. Xue, M.X. Shen, F.L. Lu, Y.Q. Han, S.H. Zeng, S.N. Chen, Z.Y. Li, Z.Y. Wang, Effects of heterionic montmorillonites on flame resistances of polystyrene nanocomposites and the flame retardant mechanism, J. Compos. Mater. 52 (10) (2018) 1295-1303. [20] Y. Sun, Y.Z. Wang, Y.B. Qing, X.Y. Wu, Z. Shi, A DOPO-base schiff derivative used as a flame retardant for polystyrene, J. Appl. Polym. Sci. 137 (40) (2020) 49224. [21] X.L. Chen, C.Y. Ma, C.M. Jiao, Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene, Polym. Degrad. Stab. 129 (2016) 275-285. [22] Y.Q. Lin, S.H. Jiang, Y. Hu, G.H. Chen, X.X. Shi, X.F. Peng, Hybrids of aluminum hypophosphite and ammonium polyphosphate: Highly effective flame retardant system for unsaturated polyester resin, Polym. Compos. 39 (5) (2018) 1763-1770. [23] Y.W. Yan, L. Chen, R.K. Jian, S. Kong, Y.Z. Wang, Intumescence: An effect way to flame retardance and smoke suppression for polystryene, Polym. Degrad. Stab. 97 (8) (2012) 1423-1431. [24] Z.M. Zhu, W.H. Rao, A.H. Kang, W. Liao, Y.Z. Wang, Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite, Polym. Degrad. Stab. 154 (2018) 1-9. [25] L.A. Savas, F. Hacioglu, M. Hancer, M. Dogan, Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers, Polym. Bull. 77 (1) (2020) 291-306. [26] Y.W. Yan, J.Q. Huang, Y.H. Guan, K. Shang, R.K. Jian, Y.Z. Wang, Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite, Polym. Degrad. Stab. 99 (2014) 35-42. [27] W. Yang, Z.J. Jia, Y.N. Chen, Y.R. Zhang, J.Y. Si, H.D. Lu, B.H. Yang, Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: Thermal degradation, flame retardancy and mechanical properties, RSC Adv. 5 (128) (2015) 105869-105879. [28] Z.T. Yin, W. Cai, J.Y. Lu, B. Yu, B.B. Wang, L. Song, Y. Hu, Cost-effective graphite felt and phosphorous flame retardant with extremely high electromagnetic shielding, Compos. B Eng. 236 (2022) 109819. [29] X.L. Yu, B.B. Wang, P.F. Jia, Z.T. Yin, G. Tang, X.D. Zhou, T.T. Lu, L.Y. Guo, L. Song, Y. Hu, Effects of graphene nanosheets decorated by cerium stannate on the enhancement of flame retardancy and mechanical performances of flexible polyurethane foam composites, Polym. Adv. Technol. 33 (1) (2022) 290-302. [30] Z.T. Yin, F.K. Chu, B. Yu, B.B. Wang, Y. Hu, Hierarchical Ti3C2Tx@BPA@PCL for flexible polyurethane foam capable of anti-compression, self-extinguishing and flame-retardant, J. Colloid Interface Sci. 626 (2022) 208-220. [31] L. Ahmed, B. Zhang, S. Hawkins, M.S. Mannan, Z.D. Cheng, Study of thermal and mechanical behaviors of flame retardant polystyrene-based nanocomposites prepared via in situ polymerization method, J. Loss Prev. Process. Ind. 49 (2017) 228-239. [32] X.L. Jiang, P.F. Ma, F. You, C. Yao, J.L. Yao, F.J. Liu, A facile strategy for modifying boron nitride and enhancing its effect on the thermal conductivity of polypropylene/polystyrene blends, RSC Adv. 8 (56) (2018) 32132-32137. [33] J.C. Liu, M.J. Xu, T. Lai, B. Li, Effect of surface-modified ammonium polyphosphate with KH550 and silicon resin on the flame retardancy, water resistance, mechanical and thermal properties of intumescent flame retardant polypropylene, Ind. Eng. Chem. Res. 54 (40) (2015) 9733-9741. [34] G. Tang, X. Wang, W.Y. Xing, P. Zhang, B.B. Wang, N.N. Hong, W. Yang, Y. Hu, L. Song, Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite, Ind. Eng. Chem. Res. 51 (37) (2012) 12009-12016. [35] W. Cai, Z.X. Li, X.W. Mu, L.X. He, X. Zhou, W.W. Guo, L. Song, Y. Hu, Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change, J. Hazard. Mater. 404 (2021) 124106. [36] W. Cai, T.M. Cai, L.X. He, F.K. Chu, X.W. Mu, L.F. Han, Y. Hu, B.B. Wang, W.Z. Hu, Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane, J. Hazard. Mater. 387 (2020) 121971. [37] Z.X. Li, S.J. Lei, J.C. Xi, D.L. Ye, W.Z. Hu, L. Song, Y. Hu, W. Cai, Z. Gui, Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal, Chem. Eng. J. 426 (2021) 129580. [38] W. Cai, Y. Pan, X.M. Feng, X.W. Mu, W.Z. Hu, L. Song, X. Wang, Y. Hu, Cicada wing-inspired solar transmittance enhancement and hydrophobicity design for graphene-based solar steam generation: A novel gas phase deposition approach, Appl. Energy 320 (2022) 119322. [39] W. Cai, Z.X. Li, Y. Pan, X.M. Feng, L.F. Han, T.Y. Cui, Y. Hu, W.Z. Hu, A novel approach simultaneously imparting well-hydrophobicity and photothermal conversion effect to polymer materials: solar-promoted absorption of organic solvents and oils, J. Hazard. Mater. 437 (2022) 129446. [40] W. Cai, J.L. Wang, Y. Pan, W.W. Guo, X.W. Mu, X.M. Feng, B.H. Yuan, X. Wang, Y. Hu, Mussel-inspired functionalization of electrochemically exfoliated graphene: based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane, J. Hazard. Mater. 352 (2018) 57-69. [41] X.W. Mu, X. Zhou, W. Wang, Y.L. Xiao, C. Liao, L.F. Han, Y.C. Kan, L. Song, Design of compressible flame retardant grafted porous organic polymer based separator with high fire safety and good electrochemical properties, Chem. Eng. J. 405 (2021) 126946. [42] X.W. Mu, Z.Y. Jin, F.K. Chu, W. Cai, Y.L. Zhu, B. Yu, L. Song, Y. Hu, High-performance flame-retardant polycarbonate composites: Mechanisms investigation and fire-safety evaluation systems establishment, Compos. B Eng. 238 (2022) 109873. [43] B. Zou, S.L. Qiu, Y.F. Zhou, Z.Y. Qian, Z.M. Xu, J.W. Wang, Y.L. Xiao, C. Liao, W.H. Yang, L.F. Han, F.K. Chu, L. Song, Y. Hu, Photothermal-healing, and record thermal stability and fire safety black phosphorus-boron hybrid nanocomposites: mechanism of phosphorus fixation effects and charring inspired by cell walls, J. Mater. Chem. A 10 (27) (2022) 14423-14434. [44] B. Zou, S.L. Qiu, X.Y Ren, Y.F. Zhou, F. Zhou, Z.M. Xu, Z.X. Zhao, L. Song, Y. Hu, X.L. Gong, Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites, J. Hazard. Mater. 383 (2020) 121069. [45] G. Wang, S.B. Bai, Synergistic effect of expandable graphite and melamine phosphate on flame-retardant polystyrene, J. Appl. Polym. Sci. 134 (47) (2017) 45474. [46] S.S. Xiao, M.J. Chen, L.P. Dong, C. Deng, L. Chen, Y.Z. Wang, Thermal degradation, flame retardance and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite, Chin. J. Polym. Sci. 32 (1) (2014) 98-107. |
[1] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[2] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[4] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[5] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[6] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[7] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 1-14. |
[8] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[9] | Yiming Bai, Shuaiyu Xiang, Feifan Cheng, Jinsong Zhao. A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 266-276. |
[10] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[11] | Kang Wang, Wei Tan, Liyan Liu. “Relay-mode” promoting permeation of water-based fire extinguishing agent in granular materials porous media stacks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 98-112. |
[12] | Guijia Cui, Hong Wang, Fengping Yu, Haiying Che, Xiaozhen Liao, Linsen Li, Weimin Yang, Zifeng Ma. Scalable synthesis of Na3V2(PO4)3/C with high safety and ultrahigh-rate performance for sodium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 280-286. |
[13] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[14] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[15] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||