Chinese Journal of Chemical Engineering ›› 2023, Vol. 61 ›› Issue (9): 221-236.DOI: 10.1016/j.cjche.2023.02.018
• Review • Previous Articles Next Articles
Shitong Zhu, Wenyi Deng, Yaxin Su
Received:
2022-12-20
Revised:
2023-02-13
Online:
2023-12-14
Published:
2023-09-28
Contact:
Wenyi Deng,E-mail:dengwy@dhu.edu.cn
Supported by:
Shitong Zhu, Wenyi Deng, Yaxin Su
通讯作者:
Wenyi Deng,E-mail:dengwy@dhu.edu.cn
基金资助:
Shitong Zhu, Wenyi Deng, Yaxin Su. Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications[J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 221-236.
Shitong Zhu, Wenyi Deng, Yaxin Su. Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications[J]. 中国化学工程学报, 2023, 61(9): 221-236.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.02.018
[1] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D.Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 14 (24) (2002) 1857–1860. [2] B. Wang, Y.B. Zhang, L. Shi, J. Li, Z.G. Guo, Advances in the theory of superhydrophobic surfaces, J. Mater. Chem. 22 (38) (2012) 20112–20127. [3] W. C, Extrand, Y.Kumagai, An experimental study of contact angle hysteresis, J. Colloid Interface Sci. 191 (2) (1997) 378–383. [4] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (5) (2003) 301–306. [5] M. Callies, D. Quéré, On water repellency, Soft Matter 1 (1) (2005) 55–61. [6] G. de Crevoisier, P. Fabre, J.M. Corpart, L. Leibler, Switchable tackiness and wettability of a liquid crystalline polymer, Science 285 (5431) (1999) 1246–1249. [7] T.P. Russell, Surface-responsive materials, Science 297 (5583) (2002) 964–967. [8] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London (95) (1805), 65–87. [9] R.N.Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (8) (1936) 988–994. [10] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (0) (1944) 546–551. [11] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1) (1997) 1–8. [12] L.C. Gao, T.J. McCarthy, The “lotus effect” explained: two reasons why two length scales of topography are important, Langmuir 22 (7) (2006) 2966–2967. [13] L. Feng, Y.N. Zhang, J.M. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: A superhydrophobic state with high adhesive force, Langmuir 24 (8) (2008) 4114–4119. [14] X.F. Gao, L. Jiang, Biophysics: Water-repellent legs of water striders, Nature 432 (7013) (2004) 36. [15] Y.M. Zheng, X.F. Gao, L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matter 3 (2) (2007) 178–182. [16] A.R. Parker, C.R. Lawrence, Water capture by a desert beetle, Nature 414 (6859) (2001) 33–34. [17] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature 405 (6787) (2000) 681–685. [18] P. Ball, Engineering Shark skin and other solutions, Nature 400 (6744) (1999) 507–509. [19] G.J. Li, B. Jiang, H.Q. Liu, L. Ning, D.Q. Yi, X.M. Wang, Z.Y. Liu,, Superhydrophobic surface with lotus/petal effect and its improvement on fatigue resistance of heat-resistant steel, Prog. Org. Coat. 137 (2019) 105315. [20] K.S. Liu, J.X. Du, J.T. Wu, L. Jiang, Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials, Nanoscale 4 (3) (2012) 768–772. [21] K.S. Liu, M.L. Zhang, J. Zhai, J. Wang, L. Jiang, Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance, Appl. Phys. Lett. 92 (18) (2008) 183103. [22] Y. Liu, X.M. Yin, J.J. Zhang, Y.M. Wang, Z.W. Han, L.Q. Ren, Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate, Appl. Surf. Sci. 280 (2013) 845–849. [23] S. Wang, L. Feng, L. Jiang, One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces, Adv. Mater. 18 (6) (2006) 767–770. [24] K. Liu, Y. Tian, L. Jiang, Bio-inspired superoleophobic and smart materials: Design, fabrication, and application, Prog. Mater. Sci. 58 (4) (2013) 503–564. [25] B.T. Qian, Z.Q. Shen, Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir 21 (20) (2005) 9007–9009. [26] F.Q. Chu, X.M. Wu, Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures, Appl. Surf. Sci. 371 (2016) 322–328. [27] M. Qu, B. Zhang, S. Song, L. Chen, J. Zhang, X.Cao, Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process, Adv. Funct. Mater. 17 (4) (2007) 593–596. [28] Q. Wang, B.W. Zhang, M.N. Qu, J.Y Zhang, D.Y. He, Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid, Appl. Surf. Sci. 254 (7) (2008) 2009–2012. [29] R. Fuchs-Godec, Flower-like superhydrophobic surfaces fabricated on stainless steel as a barrier against corrosion in simulated acid rain, Materials (Basel) 15 (20) (2022) 7104. [30] M. Safarpour, S. Alireza Hosseini, F. Ahadani-Targhi, P. Vašina, M.Alishahi, A transition from petal-state to lotus-state in AZ91 magnesium surface by tailoring the microstructure, Surf. Coat. Technol. 383 (2020) 125239. [31] L. Doskočil, P. Šomanová, J. Másilko, M. Buchtík, M. Hasoňová, L. Kalina, J.Wasserbauer, Characterization of prepared superhydrophobic surfaces on AZ31 and AZ91 alloys etched with ZnCl2 and SnCl2, Coatings 12 (10) (2022) 1414. [32] Y. Li, Y. Wan, Z.W. Dong, J.Y. Zhang, Excellent friction-reducing performance of superhydrophobic steel surface in dry sliding, RSC Adv. 4 (39) (2014) 20548–20553. [33] C. Chen, S.Y Yang, L.Y. Liu, H. Xie, H. Liu, L.X. Zhu, X.L. Xu, A green one-step fabrication of superhydrophobic metallic surfaces of aluminum and zinc, J. Alloys Compd. 711 (2017) 506–513. [34] J. Yang, W. Li, Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior, J. Alloys Compd. 576 (2013) 215–219. [35] N. Wang, D.S. Xiong, Y.L. Deng, Y. Shi, K. Wang, Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties, ACS Appl. Mater. Interfaces 7 (11) (2015) 6260–6272. [36] Y.S. Chen, W.Y. Deng, S.T. Zhu, G. Chen, L.H. Wang, Y.X. Su, Preparation of super-hydrophobic surface with micro-nano layered structure on 316 stainless steel by one-step wet chemical method, Colloids Surf. A Physicochem. Eng. Aspects 655 (2022) 130291. [37] M. Morra, E. Occhiello, F.Garbassi, Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene), Langmuir 5 (3) (1989) 872–876. [38] A. Marmur, The lotus effect: superhydrophobicity and metastability, Langmuir 20 (9) (2004) 3517–3519. [39] N.A. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir 20 (17) (2004) 7097–7102. [40] E. Bormashenko, Y. Bormashenko, G. Whyman, R. Pogreb, O. Stanevsky, Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie-Baxter wetting hypothesis, J. Colloid Interface Sci. 302 (1) (2006) 308–311. [41] Y.K. Sun, J.Y. Liu, P.M. Ming, D.Y. Zhao, J.L. Song, Wire electrochemical etching of superhydrophobic 304 stainless steel surfaces based on high local current density with neutral electrolyte, Appl. Surf. Sci. 571 (2022) 151269. [42] T.F. Xiang, Y. Han, Z.Q. Guo, R. Wang, S.L. Zheng, S. Li, C. Li, X.M.Dai, Fabrication of inherent anticorrosion superhydrophobic surfaces on metals, ACS Sustainable Chem. Eng. 6 (4) (2018) 5598–5606. [43] Z. Xu, D.Y. Jiang, Z.B. Wei, J. Chen, J.F. Jing, Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation, Appl. Surf. Sci. 427 (2018) 253–261. [44] X. Qi, W. Song, Z. Mao, W.R. Gao, Q. Cong, Fabrication of a bionic needle with both super-hydrophobic and antibacterial properties, J. Bionic Eng. 10 (3) (2013) 377–382. [45] J.T. Wang, Z.L. Zou, G.H. Geng, Construction of superhydrophobic copper film on stainless steel mesh by a simple liquid phase chemical reduction for efficient oil/water separation, Appl. Surf. Sci. 486 (2019) 394–404. [46] N. Wang, Q. Wang, S.S. Xu, X.Zheng, Eco-friendly and safe method of fabricating superhydrophobic surfaces on stainless steel substrates, J. Phys. Chem. C 123 (42) (2019) 25738–25746. [47] Z.Y. Hu, F.L. Ma, L.Q. Liu, Z.X. Zeng, J. Yi, Q. Li, Fluorine-free superhydrophobic coating with mechanical interlocking and high corrosion resistance, Prog. Org. Coat. 168 (2022) 106871. [48] L.B. Feng, H.X. Zhang, Z.L. Wang, Y.H. Liu, Superhydrophobic aluminum alloy surface: fabrication, structure, and corrosion resistance, Colloids Surf. A Physicochem. Eng. Aspects 441 (2014) 319–325. [49] Z.B. Zhang, F.X. Xue, W.X. Bai, X.T. Shi, Y.H. Liu, L.B.Feng, Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance, Surf. Coat. Technol. 410 (2021) 126952. [50] H.-Q. Fan, P. Lu, X. Zhu, Y. Behnamian, Q. Li, Development of superhydrophobic and corrosion resistant coatings on carbon steel by hydrothermal treatment and fluoroalkyl silane self-assembly, Mater. Chem. Phys. 290 (2022) 126569. [51] L.B. Boinovich, A.M. Emelyanenko, A.D. Modestov, A.G. Domantovsky, K.A. Emelyanenko, Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment, ACS Appl. Mater. Interfaces 7 (34) (2015) 19500–19508. [52] A.M. Emelyanenko, F.M. Shagieva, A.G. Domantovsky, L.B.Boinovich, Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion, Appl. Surf. Sci. 332 (2015) 513–517. [53] X.Y. Gao, Z.G. Guo, Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface, J. Colloid Interface Sci. 512 (2018) 239–248. [54] N. Wang, D.S. Xiong, S. Pan, Y.L. Deng, Y. Shi, Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate, Appl. Surf. Sci. 387 (2016) 1219–1224. [55] G.L. Chen, Y.M. Wang, Y.C. Zou, D.C. Jia, Y. Zhou, A fractal-patterned coating on titanium alloy for stable passive heat dissipation and robust superhydrophobicity, Chem. Eng. J. 374 (2019) 231–241. [56] X.Q. Hao, L. Wang, D.H. Lv, Q.D. Wang, L. Li, N. He, B.H. Lu, Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces, Appl. Surf. Sci. 325 (2015) 151–159. [57] A. Kumar, B. Gogoi, Development of durable self-cleaning superhydrophobic coatings for aluminium surfaces via chemical etching method, Tribol. Int. 122 (2018) 114–118. [58] M.A.Streicher, General and intergranular corrosion of austenitic stainless steels in acids, J. Electrochem. Soc. 106 (3) (1959) 161. [59] J.L. Wang, J. Tang, P. Zhang, Y.D. Li, J. Wang, Y.X. Lai, L. Qin, Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review, J. Biomed. Mater. Res. B Appl. Biomater. 100 (6) (2012) 1691–1701. [60] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y.Ueda, The lowest surface free energy based on –CF3 alignment, Langmuir 15 (13) (1999) 4321–4323. [61] E.V. Bryuzgin, V.V. Klimov, S.A. Repin, A.V. Navrotskiy, I.A.Novakov, Aluminum surface modification with fluoroalkyl methacrylate-based copolymers to attain superhydrophobic properties, Appl. Surf. Sci. 419 (2017) 454–459. [62] H.M. Forooshani, M. Aliofkhazraei, A.S.Rouhaghdam, Superhydrophobic aluminum surfaces by mechanical/chemical combined method and its corrosion behavior, J. Taiwan Inst. Chem. Eng. 72 (2017) 220–235. [63] P. Varshney, J. Lomga, P. K. Gupta, S. S. Mohapatra, A. Kumar, Durable and regenerable superhydrophobic coatings for aluminium surfaces with excellent self-cleaning and anti-fogging properties, Tribol. Int. 119 (2018) 38–44. [64] T. He, Y.C. Wang, Y.J. Zhang, Q. lv, T.G. Xu, T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater, Corros. Sci. 51 (8) (2009) 1757–1761. [65] Y. Liu, J.D. Liu, S.Y. Li, Y.M. Wang, Z.W. Han, L.Q. Ren, One-step method for fabrication of biomimetic superhydrophobic surface on aluminum alloy, Colloids Surf. A Physicochem. Eng. Aspects 466 (2015) 125–131. [66] L.J. Liu, F.Y. Xu, L.Ma, Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets, J. Phys. Chem. C 116 (35) (2012) 18722–18727. [67] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation, Colloids Surf. A Physicochem. Eng. Aspects 500 (2016) 54–63. [68] S.R. Yu, X.L. Wang, W. Wang, Q. Yao, J. Xu, W. Xiong, A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel, Appl. Surf. Sci. 271 (2013) 149–155. [69] S. R. Yu, J. A. Liu, W. Diao, W. Li, Preparation of a bionic microtexture on X52 pipeline steels and its superhydrophobic behavior, J. Alloys Compd. 585 (2014) 689–695. [70] S.P. Pujari, L. Scheres, A.T.M. Marcelis, H.Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chem. Int. Ed. 53 (25) (2014) 6322–6356. [71] S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C.Willis, Super-repellent composite fluoropolymer surfaces, J. Phys. Chem. B 104 (37) (2000) 8836–8840. [72] H.F. Meng, S.T. Wang, J.M. Xi, Z.Y. Tang, L.Jiang, Facile means of preparing superamphiphobic surfaces on common engineering metals, J. Phys. Chem. C 112 (30) (2008) 11454–11458. [73] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super oil‐repellent surfaces, Angew. Chem. Int. Ed. 36 (9) (1997), 1011–1012. [74] R.R. Thomas, K.G. Lloyd, K.M. Stika, L.E. Stephans, G.S. Magallanes, V.L. Dimonie, E.D. Sudol, M.S.El-Aasser, Low free energy surfaces using blends of fluorinated acrylic copolymer and hydrocarbon acrylic copolymer latexes, Macromolecules 33 (23) (2000) 8828–8841. [75] Y.X. Gu, G.X. He, S.P. Li, W.Q. Ding, H.L. Li, J.H.Duan, Study on frost-suppression characteristics of superhydrophobic aluminum surface heat exchanger applied in air source heat pump, Sustainability 14 (4) (2022) 1954. [76] F.Q. Guo, S.W. Duan, D.T. Wu, K. Matsuda, T. Wang, Y. Zou, Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion, Corros. Sci. 182 (2021) 109262. [77] Y. Lu, S. Sathasivam, J.L. Song, F.Z. Chen, W.J. Xu, C.J. Carmalt, I.P. Parkin, Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation, J. Mater. Chem. A 2 (30) (2014) 11628–11634. [78] B.B. Zhang, Y.X. Zeng, J. Wang, Y.Y. Sun, J. Zhang, Y.T. Li, Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency, Mater. Des. 188 (2020) 108479. [79] P. Zhang, Y. Maeda, F.Y. Lv, Y. Takata, D. Orejon, Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures, ACS Appl. Mater. Interfaces 9 (40) (2017) 35391–35403. [80] F. Y. Lv, P. Zhang, Fabrication and characterization of superhydrophobic surfaces on aluminum alloy substrates, Appl. Surf. Sci. 321 (2014) 166–172. [81] J.-e. Qu, C.Q. Yu, R.J. Cui, J. Qin, H.R. Wang, Z.Y. Cao, Preparation of super-hydrophobic and corrosion resistant colored films on chemically etched 304 stainless steel substrate, Surf. Coat. Technol. 354 (2018) 236–245. [82] J.L. Song, W.J. Xu, X. Liu, Y. Lu, Z.F. Wei, L.B. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method, Chem. Eng. J. 211-212 (2012) 143–152. [83] L.G. Gao, S.Z. Yang, H.J. Yang, T.L.Ma, One-stage method for fabricating superhydrophobic stainless steel surface and its anti-corrosion performance, Adv. Eng. Mater. 19 (2) (2017) 1600511. [84] J.-H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Realization of superhydrophobic aluminum surfaces with novel micro-terrace nano-leaf hierarchical structure, Appl. Surf. Sci. 451 (2018) 207–217. [85] W.G. Xu, H.Q. Liu, S.X. Lu, J.M. Xi, Y.B.Wang, Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates, Langmuir 24 (19) (2008) 10895–10900. [86] Z.B. Zhang, J.W. Zhao, Y.Q. Lei, Y.K. Wang, G.Y. Zhou, C.L. Xu, Y.L. Rao, K. Wang, Preparation of intricate nanostructures on 304 stainless steel surface by SiO2-assisted HF etching for high superhydrophobicity, Colloids Surf. A Physicochem. Eng. Aspects 586 (2020) 124287. [87] B. Jiang, G.J. Li, H.Q. Liu, D.Q. Yi, Y. Zhang, R.H. Xue, Q. Wen, Z.Y. Liu, L. Ning, X.M. Wang, Superhydrophobic coating on heat-resistant steel surface fabricated by a facile method, J. Iron Steel Res. Int. 25 (9) (2018) 975–983. [88] S. Peng, B. Bhushan, Mechanically durable superoleophobic aluminum surfaces with microstep and nanoreticula hierarchical structure for self-cleaning and anti-smudge properties, J. Colloid Interface Sci. 461 (2016) 273–284. [89] S. Peng, X.J. Yang, D. Tian, W.L. Deng, Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure, ACS Appl. Mater. Interfaces 6 (17) (2014) 15188–15197. [90] R. Deng, Y.M. Hu, L. Wang, Z.H. Li, T. Shen, Y. Zhu, J.Z.Xiang, An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces, Appl. Surf. Sci. 402 (2017) 301–307. [91] C.W. Du, X.Y. He, F. Tian, X.Q. Bai, C.Q.Yuan, Preparation of superhydrophobic steel surfaces with chemical stability and corrosion, Coatings 9 (6) (2019) 398. [92] J. Li, X.H. Liu, Y.P. Ye, H.D. Zhou, J.M.Chen, Fabrication of superhydrophobic CuO surfaces with tunable water adhesion, J. Phys. Chem. C 115 (11) (2011) 4726–4729. [93] N. Wen, S. Peng, X.J. Yang, M.Y. Long, W.S. Deng, G.Y. Chen, J.Q. Chen, W.L.Deng, A cycle-etching approach toward the fabrication of superamphiphobic stainless steel surfaces with excellent anticorrosion properties, Adv. Eng. Mater. 19 (6) (2017) 1600879. [94] X.W. Li, Q.X. Zhang, Z. Guo, T. Shi, J.G. Yu, M.K. Tang, X.J.Huang, Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate, Appl. Surf. Sci. 342 (2015) 76–83. [95] X.W. Li, Q.X. Zhang, Z. Guo, J.G. Yu, M.K. Tang, X.J. Huang, Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance, RSC Adv. 5 (38) (2015) 29639–29646. [96] K. Zhao, Z.L. Wang, Y. Yang, Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator, ACS Nano 10 (9) (2016) 9044–9052. [97] B. Yin, L. Fang, J. Hu, A.Q. Tang, W.H. Wei, J.He, Preparation and properties of super-hydrophobic coating on magnesium alloy, Appl. Surf. Sci. 257 (5) (2010) 1666–1671. [98] P. Bandi, K. Venkata Muralidhar, S. Kausley, B.Rai, Development of superhydrophobic and corrosion resistant coatings on mild steel—A greener approach, Mater. Today Commun. 25 (2020) 101625. [99] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property, Appl. Surf. Sci. 317 (2014) 701–709. [100] D.M. Lv, J.F. Ou, M.S. Xue, F.J. Wang, Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution, Appl. Surf. Sci. 333 (2015) 163–169. [101] D. Nanda, A. Sahoo, A. Kumar, B. Bhushan, Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces, J. Colloid Interface Sci. 535 (2019) 50–57. [102] A. Esmaeilirad, M.V. Rukosuyev, M.B.G. Jun, F.C.J.M.van Veggel, A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces, Surf. Coat. Technol. 285 (2016) 227–234. [103] T. A. Saleh, N. Baig, Efficient chemical etching procedure for the generation of superhydrophobic surfaces for separation of oil from water, Prog. Org. Coat. 133 (2019) 27–32. [104] H.P. Boehm, Acidic and basic properties of hydroxylated metal oxide surfaces, Discuss. Faraday Soc. 52 (0) (1971) 264–275. [105] H. Tamura, A. Tanaka, K.-y. Mita, R. Furuichi, Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity, J. Colloid Interface Sci. 209 (1) (1999) 225–231. [106] T. Zhang, C.J. Li, J. Ma, H. Tian, Z.M. Qiang, Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship, Appl. Catal. B Environ. 82 (1–2) (2008) 131–137. [107] H. Tamura, K. Mita, A. Tanaka, M. Ito Mechanism of hydroxylation of metal oxide surfaces, J. Colloid Interface Sci. 243 (1) (2001) 202–207. [108] A. Hozumi, B. Kim, T.J. McCarthy, Hydrophobicity of perfluoroalkyl isocyanate monolayers on oxidized aluminum surfaces, Langmuir 25 (12) (2009) 6834–6840. [109] N. Saleema, D.K. Sarkar, R.W. Paynter, X.G. Chen, Superhydrophobic aluminum alloy surfaces by a novel one-step process, ACS Appl. Mater. Interfaces 2 (9) (2010) 2500–2502. [110] Y. Huang, D. K. Sarkar, X. Grant Chen, Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties, Appl. Surf. Sci. 356 (2015) 1012–1024. [111] S. M. A. Mousavi, R. Pitchumani, Temperature-dependent dynamic fouling on superhydrophobic and slippery nonwetting copper surfaces, Chem. Eng. J. 431 (2022) 133960. [112] P. Varshney, S. S. Mohapatra, Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique, Tribol. Int. 123 (2018) 17–25. [113] F. Mumm, A.T. van Helvoort, P. Sikorski, Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems, ACS Nano 3 (9) (2009) 2647–2652. [114] P.P. Li, X.H. Chen, G.B. Yang, L.G. Yu, P.Y. Zhang, Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil, Appl. Surf. Sci. 300 (2014) 184–190. [115] X. Zhang, J. Zhao, J.L. Mo, R.Y. Sun, Z. Li, Z.G. Guo, Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification, Colloids Surf. A Physicochem. Eng. Aspects 567 (2019) 205–212. [116] Y.H. Wang, W. Wang, L. Zhong, J. Wang, Q.L. Jiang, X.Y.Guo, Super-hydrophobic surface on pure magnesium substrate by wet chemical method, Appl. Surf. Sci. 256 (12) (2010) 3837–3840. [117] W.G. Xu, T. Ning, X.C. Yang, S.X. Lu, Fabrication of superhydrophobic surfaces on zinc substrates, Appl. Surf. Sci. 257 (11) (2011) 4801–4806. [118] H. Li, S.R. Yu, X.X. Han, E.Y. Liu, Y. Zhao, Fabrication of superhydrophobic and oleophobic surface on zinc substrate by a simple method, Colloids Surf. A Physicochem. Eng. Aspects 469 (2015) 271–278. [119] O. Rius-Ayra, A. Biserova-Tahchieva, V. Sansa-López, N. Llorca-Isern, Superhydrophobic 304 stainless steel mesh for the removal of high-density polyethylene microplastics, Langmuir 38 (18) (2022) 5943–5953. [120] S.P. Dalawai, M. Aly Saad Aly, S.S. Latthe, R.M. Xing, R.S. Sutar, S. Nagappan, C.S. Ha, K. Kumar Sadasivuni, S.H.Liu, Recent Advances in durability of superhydrophobic self-cleaning technology: a critical review, Prog. Org. Coat. 138 (2020) 105381. [121] W. Tong, D.S. Xiong, N. Wang, C.Q. Yan, T. Tian, Green and timesaving fabrication of a superhydrophobic surface and its application to anti-icing, self-cleaning and oil-water separation, Surf. Coat. Technol. 352 (2018) 609–618. [122] L.B. Boinovich, A.M. Emelyanenko, V.K. Ivanov, A.S. Pashinin, Durable icephobic coating for stainless steel, ACS Appl. Mater. Interfaces 5 (7) (2013) 2549–2554. [123] P. Rodič, B. Kapun, M. Panjan, I.Milošev, Easy and fast fabrication of self-cleaning and anti-icing perfluoroalkyl silane film on aluminium, Coatings 10 (3) (2020) 234. [124] Z.P. Zuo, R.J. Liao, C. Guo, Y. Yuan, X.T. Zhao, A.Y. Zhuang, Y.Y.Zhang, Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface, Appl. Surf. Sci. 331 (2015) 132–139. [125] X.Y. Xiao, W. Xie, Z.H. Ye, Preparation of corrosion-resisting superhydrophobic surface on aluminium substrate, Surf. Eng. 35 (5) (2019) 411–417. [126] B. Bhushan, Y. C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56 (1) (2011) 1–108. [127] H.F. Zhang, Y.J. Tuo, Q.C. Wang, B.J. Jin, L. Yin, X.W. Liu, Fabrication and drag reduction of superhydrophobic surface on steel substrates, Surf. Eng. 34 (8) (2018) 596–602. [128] C. D. Modak, S. K. Bhaumik, Creeping flow dynamics over superhydrophobic ball: slip effects and drag reduction, Colloids Surf. A Physicochem. Eng. Aspects 529 (2017) 998–1008. [129] S. Bano, U. Zulfiqar, U. Zaheer, M. Awais, I. Ahmad, T.Subhani, Durable and recyclable superhydrophobic fabric and mesh for oil-water separation, Adv. Eng. Mater. 20 (1) (2018) 1700460. [130] Z.P. Du, P. Ding, X.M. Tai, Z.H. Pan, H.Q. Yang, Facile preparation of Ag-coated superhydrophobic/superoleophilic mesh for efficient oil/water separation with excellent corrosion resistance, Langmuir 34 (23) (2018) 6922–6929. [131] J.F. Zhu, B. Liu, L.Y. Li, Z.X. Zeng, W.J. Zhao, G. Wang, X.Y. Guan, Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation, J. Phys. Chem. A 120 (28) (2016) 5617–5623. [132] S.S. Latthe, P. Sudhagar, A. Devadoss, A.M. Kumar, S.H. Liu, C. Terashima, K. Nakata, A. Fujishima, A mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties, J. Mater. Chem. A 3 (27) (2015) 14263–14271. [133] J.-H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching, Appl. Surf. Sci. 439 (2018) 598–604. [134] J. Cremaldi, B. Bhushan, Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways, J. Colloid Interface Sci. 518 (2018) 284–297.[LinkOut]. [135] L. Fay, X.M. Shi, Environmental impacts of chemicals for snow and ice control: state of the knowledge, Water Air Soil Pollut 223 (5) (2012) 2751–2770. [136] J.L. Laforte, M.A. Allaire, J.Laflamme, State-of-the-art on power line de-icing, Atmos. Res. 46 (1–2) (1998) 143–158. [137] Y.D. Wang, G. Zhang, Z.B. Tian, R.C. Qiu, Z.G. Liu, An online thermal deicing method for urban rail transit catenary, IEEE Trans. Transp. Electrification 7 (2) (2021) 870–882. [138] Z.M. Wu, C.J. Shi, P.W. Gao, D.H. Wang, Z.Cao, Effects of deicing salts on the scaling resistance of concrete, J. Mater. Civ. Eng. 27 (5) (2015) 04014160. [139] T. Xie, J.K. Dong, H.W. Chen, Y.Q. Jiang, Y.Yao, Experimental investigation of deicing characteristics using hot air as heat source, Appl. Therm. Eng. 107 (2016) 681–688. [140] Y.M Jian, H.T. Gao, Y.Y. Yan, Fluorine-free superhydrophobic surface with micron-nanosized two-tiered structure for self-cleaning, anti-frosting, and anti-icing applications, Colloids Surf. A Physicochem. Eng. Aspects 651 (2022) 129761. [141] J. Guo, F.C. Yang, Z.G. Guo, Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay, J. Colloid Interface Sci. 466 (2016) 36–43. [142] W. Li, Y.L. Zhan, S.R. Yu, Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives, Prog. Org. Coat. 152 (2021) 106117. [143] Z. Zhang, B.B. Chen, C.D. Lu, H.L. Wu, H.P. Wu, S.F. Jiang, G.Z. Chai, A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface, Compos. Struct. 180 (2017) 933–943. [144] H.M. Zhang, J. Yang, B.B. Chen, C. Liu, M.S. Zhang, C.S.Li, Fabrication of superhydrophobic textured steel surface for anti-corrosion and tribological properties, Appl. Surf. Sci. 359 (2015) 905–910. [145] Y.X. Wan, M.J. Chen, W. Liu, X.X. Shen, Y.L. Min, Q.J. Xu, The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance, Electrochimica Acta 270 (2018) 310–318. [146] J. Wang, D.D. Li, Q. Liu, X. Yin, Y. Zhang, X.Y. Jing, M.L.Zhang, Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance, Electrochimica Acta 55 (22) (2010) 6897–6906. [147] B. Park, W. Hwang, A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability, Scr. Mater. 113 (2016) 118–121. [148] K. Watanabe, Yanuar, K. Okido, H.Mizunuma, Drag reduction in flow through square and rectangular ducts with highly water-repellent walls, Trans.JSME, Ser.B 62 (601) (1996) 3330–3334. [149] L. Yin, H.F. Zhang, Y.Y. Li, Y. Wang, R.M. Zhang, W.P. Chen, X.W. Liu, Fabrication of biomimetic superhydrophobic steel surface under an oxygen rich environment, Appl. Surf. Sci. 380 (2016) 40–46. [150] S. Barthwal, S.-H. Lim, A durable, fluorine-free, and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation, J. Membr. Sci. 618 (2021) 118716. [151] J.L. Song, S. Huang, Y. Lu, X.W. Bu, J.E. Mates, A. Ghosh, R. Ganguly, C.J. Carmalt, I.P. Parkin, W.J. Xu, C.M. Megaridis, Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh, ACS Appl. Mater. Interfaces 6 (22) (2014) 19858–19865. [152] Z.Y. Yu, J. Ni, L.L. Fang, D.X. Wu, H.T.Zhu, Multilayer three-dimensional structure made of modified stainless steel mesh for in situ continuous separation of spilled oil, Ind. Eng. Chem. Res. 54 (47) (2015) 11838–11843. [153] Z.J. Cheng, J.W. Wang, H. Lai, Y. Du, R. Hou, C. Li, N.Q. Zhang, K.N. Sun, pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film, Langmuir 31 (4) (2015) 1393–1399. [154] Z.B. Zhang, C.L. Xu, W.G. Liu, K. Wang, Y.L. Rao, C. Jiang, D.W. Li, Y. Zhang, X. Jiang, X.T. Chen, C.B. Xu, Ultrasonic assisted rapid preparation of superhydrophobic stainless steel surface and its application in oil/water separation, Ultrason. Sonochem. 81 (2021) 105848. [155] P. Varshney, D. Nanda, M. Satapathy, S.S. Mohapatra, A. Kumar, A facile modification of steel mesh for oil-water separation, New J. Chem. 41 (15) (2017) 7463–7471. [156] S.L. Dong, Z.L. Wang, L.B. An, Y.G. Li, B.Z. Wang, H.C. Ji, H. Wang, Facile fabrication of a superhydrophobic surface with robust micro-/ nanoscale hierarchical structures on titanium substrate, Nanomaterials (Basel) 10 (8) (2020) 1509. [157] H. Agbe, D.K. Sarkar, X.G.Chen, Tunable superhydrophobic aluminum surfaces with anti-biofouling and antibacterial properties, Coatings 10 (10) (2020) 982. [158] L. Zhao, Q. Liu, R. Gao, J. Wang, W.L. Yang, L.H. Liu, One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance, Corros. Sci. 80 (2014) 177–183. [159] Y. Wang, X.W. Liu, H.F. Zhang, Z.P. Zhou, Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water, RSC Adv. 5 (24) (2015) 18909–18914. [160] J.Y. Zhu, H.R. Wan, X.F. Hu, A rapid one-step process for the construction of corrosion-resistant bionic superhydrophobic surfaces, Prog. Org. Coat. 100 (2016) 56–62. [161] S.L. Zheng, C. Li, Y.P. Zhang, T.F. Xiang, Y. Cao, Q.L. Li, Z.Chen, A general strategy towards superhydrophobic self-cleaning and anti-corrosion metallic surfaces: an example with aluminum alloy, Coatings 11 (7) (2021) 788. [162] P. Rodič, B. Kapun, I. Milošev, Superhydrophobic aluminium surface to enhance corrosion resistance and obtain self-cleaning and anti-icing ability, Molecules 27 (3) (2022) 1099. [163] J.Y. Tan, J.J. Hao, Z.Q. An, C.S. Liu, Superhydrophobic surfaces on brass substrates fabricated via micro-etching and a growth process, RSC Adv. 7 (42) (2017) 26145–26152. [164] D.H. Wang, Q.Q. Sun, M.J. Hokkanen, C.L. Zhang, F.Y. Lin, Q. Liu, S.P. Zhu, T.F. Zhou, Q. Chang, B. He, Q. Zhou, L.Q. Chen, Z.K. Wang, R.H.A. Ras, X. Deng, Design of robust superhydrophobic surfaces, Nature 582 (7810) (2020) 55–59. [165] J.F. Yang, F. Long, R.Y Wang, X.W. Zhang, Y.X Yang, W.B. Hu, L. Liu, Design of mechanical robust superhydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf, Colloids Surf. A Physicochem. Eng. Aspects 627 (2021) 127154. [166] J.F. Ou, W.H. Zhu, C. Xie, M.S. Xue, Mechanically robust and repairable superhydrophobic zinc coating via a fast and facile method for corrosion resisting, Materials (Basel) 12 (11) (2019) 1779. [167] T.C. Rangel, A.F. Michels, F. Horowitz, D.E. Weibel, Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes, Langmuir 31 (11) (2015) 3465–3472. [168] Z.B. Zhan, Z.H. Li, Z. Yu, S. Singh, C.L. Guo, Superhydrophobic Al surfaces with properties of anticorrosion and reparability, ACS Omega 3 (12) (2018) 17425–17429. [169] Z.W. Zhu, G.H. Xu, Y. An, C.H. He, Construction of octadecyltrichlorosilane self-assembled monolayer on stainless steel 316L surface, Colloids Surf. A Physicochem. Eng. Aspects 457 (2014) 408–413. [170] J.W. Jiang, Y.Z. Shen, Z. Wang, J. Tao, K.L. Li, Y.J.S. Xu, W.L. Liu, S.Y. Liu, Design and fabrication superhydrophobic surface with enhanced mechanical durability: interface bonding effects regulated by an introduced transition oxide layer, Appl. Surf. Sci. 592 (2022) 153199. [171] L.X. Yang, X.L. Cao, Y.T. Wu, S. Chen, X.C. Xie, Q.L. Zhu, J.X. Wang, J.E. Qu, S. Chen, P.H.Zheng, Improvement of corrosion resistance and mechanism analysis for self-assembled vinyltriethoxysilane (VS) films on low carbon steel using a novel chemical etching method, Corros. Sci. 177 (2020) 109002. |
[1] | Guixian Li, Tao Tian, Hanxu Li, Jinlian Li, Tingna Shao, Qi Zhang, Peng Dong. Anti-carbon deposition performance of twinned HZSM-5 encapsulated Ru in the toluene alkylation with methanol [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 1-8. |
[2] | Pengcheng Hu, Ruimin Chai, Ping Wang, Jinke Yang, Shufeng Zhou. Supercapacitive properties of MnNiSx@Ti3C2Tx MXene positive electrode assisted by functionalized ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 102-109. |
[3] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[4] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[7] | Xinyao Sun, Liu Zhao, Xu Hou, Hao Zhou, Huimin Qiao, Chenggong Song, Jing Huang, Enxian Yuan. Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 155-162. |
[8] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[9] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[10] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[11] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[12] | Fei Wang, Zhiyuan Bi, Lifeng Ding, Qingyuan Yang. Large-scale computational screening of metal–organic frameworks for D2/H2 separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 323-330. |
[13] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[14] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[15] | Jiancheng Shu, Xiangfei Zeng, Danyang Sun, Yong Yang, Zuohua Liu, Mengjun Chen, Daoyong Tan. Enhanced Mn2+ solidification and NH4+-N removal from electrolytic manganese metal residue via surfactants [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 205-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||