Chinese Journal of Chemical Engineering ›› 2024, Vol. 70 ›› Issue (6): 118-129.DOI: 10.1016/j.cjche.2024.03.005
Previous Articles Next Articles
Hongyan Shen, Lingrui Cui, Xingguo Wei, Yuanqin Zhang, Lian Cen, Jun Xu, Fahai Cao
Received:
2023-03-10
Revised:
2024-03-02
Online:
2024-08-05
Published:
2024-06-28
Contact:
Fahai Cao,E-mail:fhcao@ecust.edu.cn
Supported by:
Hongyan Shen, Lingrui Cui, Xingguo Wei, Yuanqin Zhang, Lian Cen, Jun Xu, Fahai Cao
通讯作者:
Fahai Cao,E-mail:fhcao@ecust.edu.cn
基金资助:
Hongyan Shen, Lingrui Cui, Xingguo Wei, Yuanqin Zhang, Lian Cen, Jun Xu, Fahai Cao. B-COPNA resin formation from ethylene tar light fractions: Process development and mechanical exploration by molecular simulation[J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 118-129.
Hongyan Shen, Lingrui Cui, Xingguo Wei, Yuanqin Zhang, Lian Cen, Jun Xu, Fahai Cao. B-COPNA resin formation from ethylene tar light fractions: Process development and mechanical exploration by molecular simulation[J]. 中国化学工程学报, 2024, 70(6): 118-129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.03.005
[1] Y. Li, J.H. Yu, Emerging applications of zeolites in catalysis, separation and host-guest assembly, Nat. Rev. Mater. 6 (2021) 1156-1174. [2] P.C. Sabapathy, S. Devaraj, K. Meixner, P. Anburajan, P. Kathirvel, Y. Ravikumar, H.M. Zabed, X. Qi, Recent developments in Polyhydroxyalkanoates (PHAs) production-A review, Bioresour. Technol. 306 (2020) 123132. [3] H. Mina, D. Kannan, S.M. Gholami-Zanjani, M. Biuki, Transition towards circular supplier selection in petrochemical industry: A hybrid approach to achieve sustainable development goals, J. Clean. Prod. 286 (2021) 125273. [4] Y.F. Gao, L. Neal, D. Ding, W. Wu, C. Baroi, A.M. Gaffney, F.X. Li, Recent advances in intensified ethylene production-a review, ACS Catal. 9 (9) (2019) 8592-8621. [5] J. Kim, W. Choi, J.W. Park, C. Kim, M. Kim, H. Song, Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction, J. Am. Chem. Soc. 141 (17) (2019) 6986-6994. [6] K.J.P. Schouten, Z.S. Qin, E. Perez Gallent, M.T.M. Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes, J. Am. Chem. Soc. 134 (24) (2012) 9864-9867. [7] A. Ozden, Y.H. Wang, F.W. Li, M.C. Luo, J. Sisler, A. Thevenon, A. Rosas-Hernandez, T. Burdyny, Y. Lum, H. Yadegari, T. Agapie, J.C. Peters, E.H. Sargent, D. Sinton, Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene, Joule 5 (3) (2021) 706-719. [8] Y.Y. Borisova, N.A. Mironov, S.G. Yakubova, D.N. Borisov, I.P. Kosachev, M.R. Yakubov, Application of ethylene tar as an additive in visbreaking of petroleum vacuum residue, Energy Fuels 35 (19) (2021) 15684-15694. [9] K. Shi, J.X. Yang, C. Ye, H.B. Liu, X.K. Li, A comparison of ethylene-tar-derived isotropic pitches prepared by air blowing and nitrogen distillation methods and their carbon fibers, Materials 12 (2) (2019) 305. [10] X.L. Cheng, Q.F. Zha, J.T. Zhong, X.J. Yang, Needle coke formation derived from co-carbonization of ethylene tar pitch and polystyrene, Fuel 88 (11) (2009) 2188-2192. [11] L. Ling, K. Li, L. Liu, S. Miyamoto, Y. Korai, S. Kawano, I. Mochida, Removal of SO2 over ethylene tar pitch and cellulose based activated carbon fibers, Carbon 37 (3) (1999) 499-504. [12] M.B. Wu, Y.Y. Shi, S.B. Li, N. Guo, Y.W. Wang, J.T. Zheng, J.S. Qiu, Synthesis and characterization of condensed poly-nuclear aromatic resin using heavy distillate from ethylene tar, Carbon 55 (2012) 377. [13] C.Z. Ge, Z.L. Sun, H.X. Yang, D.H. Long, W.M. Qiao, L.C. Ling, Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method, Carbon 134 (2018) 537. [14] K. Shi, X.X. Zhang, W. Wu, J.X. Yang, H.B. Liu, X.K. Li, Effect of the oxygen content and the functionality of spinnable pitches derived from ethylene tar by distillation on the mechanical properties of carbon fibers, Carbon 150 (2019) 555. [15] J.C. Liu, X.J. Chen, Q. Xie, D.C. Liang, Controllable synthesis of isotropic pitch precursor for general purpose carbon fiber using waste ethylene tar via bromination-dehydrobromination, J. Clean. Prod. 271 (2020) 122498. [16] Y.Y. Yu, F. Wang, B. Wiafe Biney, K.Q. Li, S.H. Jiao, K. Chen, H. Liu, A.J. Guo, Co-carbonization of ethylene tar and fluid catalytic cracking decant oil: Development of high-quality needle coke feedstock, Fuel 322 (2022) 124170. [17] D.Y. Han, Z.B. Cao, Y.F. Li, Investigation of naphthalene extraction from ethylene tar, Energy Sources Part A Recovery Util. Environ. Eff. 36 (9) (2014) 993-998. [18] L. Chen, D.G. Cheng, F.Q. Chen, X.L. Zhan, A density functional theory study on the conversion of polycyclic aromatic hydrocarbons in hydrogen plasma, Int. J. Hydrog. Energy 45 (1) (2020) 309-321. [19] C.Z. Ge, H.X. Yang, J.T. Wang, W.M. Qiao, D.H. Long, L.C. Ling, Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process, RSC Adv. 6 (1) (2016) 796-804. [20] M. Ota, S. Otani, K. Kobayashi, The preparation and properties of the condensed polynuclear aromatic (COPNA) resins using an aromatic aldehyde as crosslinking agent, Chem. Lett. 18 (7) (1989) 1175-1178. [21] M. Ota, S. Otani, S. Iizuka, T. Sawada, E. Ota, A. Kojima, Syntheses of polycondensed fused-polynuclear aromatics (COPNA). Resin from the mixture of pyrene and phenanthrene using dimethyl derivatives of benzenedimethanols as cross-linking agents, NIPPON KAGAKU KAISHI 3 (1988) 343-350. [22] K. Nawa, Development of flexible polymer blend films from advanced copna resin and nylon 6, J. Appl. Polym. Sci. 61 (10) (1996) 1737-1746. [23] K. Kusakabe, S. Gohgi, S. Morooka, Carbon molecular sieving membranes derived from condensed polynuclear aromatic (COPNA) resins for gas separations, Ind. Eng. Chem. Res. 37 (11) (1998) 4262-4266. [24] K. Tanemura, T. Suzuki, Y. Nishida, T. Horaguchi, Synthesis of the strongly acidic sulfonated condensed polynuclear aromatic (S-COPNA) resins using aromatic aldehydes as cross-linking agents, Polym. Bull. 68 (3) (2012) 705-719. [25] J.T. Xia, Z.L. Hu, Z.H. Chen, G.Y. Ding, Preparation of carbon brushes with thermosetting resin binder, Trans. Nonferrous Met. Soc. China 17 (6) (2007) 1379-1384. [26] J.C. Zhang, J.L. Shi, Y. Zhao, Q.G. Guo, L. Liu, Z.H. Feng, Z. Fan, Structural changes in four different precursors with heat treatment at high temperature and resin carbon structural model, J. Mater. Sci. 47 (15) (2012) 5891-5899. [27] W. Jiang, G.S. Ni, P.P. Zuo, S.J. Qu, Y.M. Li, H.X. Niu, W.Z. Shen, Controlling spinning pitch property by tetrahydrofuran-soluble fraction of coal tar pitch co-carbonization with petrolatum, Carbon Lett. 29 (5) (2019) 505-519. [28] P. Alvarez, J. Sutil, R. Santamaria, C. Blanco, R. Menendez, M. Granda, Mesophase from anthracene oil-based pitches, Energy Fuels 22 (6) (2008) 4146-4150. [29] H.G. Liu, T.H. Li, X.L. Wang, W.J. Zhang, T.K. Zhao, Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches, J. Anal. Appl. Pyrolysis 110 (2014) 442-447. [30] S. Otani, V. Raskovic, A. Oya, A. Kojima, Some properties of a condensed polynuclear aromatic resin (COPNA) as a binder for carbon fibre composites, J. Mater. Sci. 21 (6) (1986) 2027-2032. [31] X. Ruan, Y. Dong, J. Zheng, C. Guo, Studies on synthesis of pyrene-benzaldehyde COPNA resin and its magnetic, J.Journal of Fuel Chemistry and Technology. 25(5)(1997):473. [32] M Ota, H Omiya, K Itoh, S Otani, Effect of a-methylnaphthalene as a compatibilizing agent on the mechanical properties of the fiber spun from the coal tar pitch-based thermosetting resin, J.Polym Prepr. 222(2001):253. [33] Q. L. Lin, T. H. Li, Synthesis and properties of condensed polynuclear aromatics resin using coal tar pitch as monomer and terephthalic aldehyde as cross-linking agent, Polymeric Materials Science and Engineering,23(2) (2007)62-64. (in Chinese). [34] Y.C. Guo, L.L. Chen, Q.F. Zha, G. Brebeanu, C. Dusescu, P. Rosca, Study on aromatic enrichment of FCC slurry for synthesizing COPNA. J.Revista de Chimie. 57(6)(2006): 645-649. [35] W.L. Fang, L.R. Cui, Y.Q. Zhang, H.Y. Shen, J. Xu, M.N. Ren, F.H. Cao, Investigation on a novel preparation process of B-COPNA resin from catalytic cracking diesel, Fuel 320 (2022) 123916. [36] W.F. Van Gunsteren, X. Daura, N. Hansen, A.E. Mark, C. Oostenbrink, S. Riniker, L.J. Smith, Validation of molecular simulation: An overview of issues, Angew. Chem. Int. Ed. 57 (4) (2018) 884-902. [37] B. Aguilera-Mercado, C. Herdes, J. Murgich, E.A. Muller, Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils, Energy Fuels 20 (1) (2006) 327-338. [38] Y.J. Ding, B.M. Tang, Y.Z. Zhang, J.M. Wei, X.J. Cao, Molecular dynamics simulation to investigate the influence of SBS on molecular agglomeration behavior of asphalt, J. Mater. Civ. Eng. 27 (8) (2015) 4014001-4014007. [39] X.Y. Ma, J.T. Wu, Q. Liu, W.C. Ren, M. Oeser, Molecular dynamics simulation of the bitumen-aggregate system and the effect of simulation details, Constr. Build. Mater. 285 (2021) 122886. [40] D. Nazarian, J.S. Camp, D.S. Sholl, A comprehensive set of high-quality point charges for simulations of metal-organic frameworks, Chem. Mater. 28 (3) (2016) 785-793. [41] T.M. Nymand, P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys. 112 (14) (2000) 6152-6160. [42] G. Venkatesh, C. Kamal, P. Vennila, M. Govindaraju, Y.S. Mary, S. Armakovic, S.J. Armakovic, S. Kaya, C.Y. Panicker, Molecular dynamic simulations, ALIE surface, Fukui functions geometrical, molecular docking and vibrational spectra studies of tetra chloro p and m-xylene, J. Mol. Struct. 1171 (2018) 253-267. [43] F. Fallah, F. Khabaz, Y.R. Kim, S.R. Kommidi, H.F. Haghshenas, Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction, Fuel 237 (2019) 71-80. [44] A. Samieadel, D. Oldham, E.H. Fini, Investigating molecular conformation and packing of oxidized asphaltene molecules in presence of paraffin wax, Fuel 220 (2018) 503-512. [45] S.S. Ren, X.Y. Liu, Y. Zhang, P. Lin, P. Apostolidis, S. Erkens, M.L. Li, J. Xu, Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods, Constr. Build. Mater. 287 (2021) 123058. [46] G.N. Li, M.Z. Han, Y.Q. Tan, A.X. Meng, J.L. Li, S. Li, Research on bitumen molecule aggregation based on coarse-grained molecular dynamics, Constr. Build. Mater. 263 (2020) 120933. [47] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (18) (2009) 6378-6396. [48] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (15) (2006) 1787-1799. [49] T. Lu, F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [50] M.J.Frish, J.Hiscocks, M.Caricato, Gaussian 09: IOps Reference, Wallingford, CT, USA, 2009. [51] P. Fuentealba, P. Perez, R. Contreras, On the condensed Fukui function, J. Chem. Phys. 113 (7) (2000) 2544-2551. [52] S. Bahmanyar, K.N. Houk, Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity, J. Am. Chem. Soc. 123 (45) (2001) 11273-11283. [53] H.P. Li, W.S. Zhu, S.W. Zhu, J.X. Xia, Y.H. Chang, W. Jiang, M. Zhang, Y.W. Zhou, H.M. Li, The selectivity for sulfur removal from oils: an insight from conceptual density functional theory, AlChE. J. 62 (6) (2016) 2087-2100. [54] E.A. Bayle, Modeling the transition state structure to probe a reaction mechanism on the oxidation of quinoline by quinoline 2-oxidoreductase, Chem. Cent. J. 10 (1) (2016) 70. [55] Z.C. Zhao, P. Li, Q.W. Fan, H. Yan, Studies on predicting reactive sites of 3, 9-diazatetraasteranes by conceptual density functional theory and experiment, Struct. Chem. 30 (5) (2019) 1707-1714. [56] W. Jiang, K. Zhu, H.P. Li, L.H. Zhu, M.Q. Hua, J. Xiao, C. Wang, Z.Z. Yang, G.Y. Chen, W.S. Zhu, H.M. Li, S. Dai, Synergistic effect of dual Broensted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel, Chem. Eng. J. 394 (2020) 124831. [57] L. Merzoud, F. Guégan, H. Chermette, C. Morell, Understanding the intermolecular Diels-Alder cycloaddition promotion: activation strain model/energy decomposition analysis model and conceptual density functional theory viewpoints, J. Comput. Chem. 42 (19) (2021) 1364-1372. [58] C.A. Grambow, L. Pattanaik, W.H. Green, Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry, Sci. Data 7 (1) (2020) 137. |
[1] | Liwei Cheng, Yunfei Li, Jinlong Cui, Huibo Qin, Fulong Ning, Bei Liu, Guangjin Chen. Molecular simulation study on the evolution process of hydrate residual structures into hydrate [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 79-91. |
[2] | Jie Zhang, Xingzhe Guo, Bing Lin, Guangzu Xiong, Hanshuang Wang, Min Zhang, Liwen Fan, Bingwen Li, Shuisheng Chen. Efficient adsorption separation of methane from C2-C3 hydrocarbons in a Co(II)-nodes metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 192-198. |
[3] | Yuwen Wei, Chunling Zhang, Yue Zhang, Lili Wang, Li Xia, Xiaoyan Sun, Shuguang Xiang. Design method of extractant for liquid-liquid extraction based on elements and chemical bonds [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 193-202. |
[4] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[5] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[6] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[7] | Hui-Yong Wu, Hong-Xin Fu, Yu Liu, Xiao-Sa Zhang, Wen-Ze Li, Jian Luan. Tailoring the separation performance of a carbon nanotube-based mixed matrix membrane decorated with metal–organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 87-95. |
[8] | Mengjin Zhou, Yanli Zhang, Ke Xue, Haixia Li, Zhaoyou Zhu, Peizhe Cui, Yinglong Wang, Jingwei Yang. Separation of fuel additives based on mechanism analysis and thermodynamic phase behavior [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 168-176. |
[9] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[10] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 70-76. |
[11] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[12] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[13] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[14] | Shufen Zhang, Wei Ma, Bingtao Tang, Bin Shan. Innovation and application of dyes with high fixation [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 146-152. |
[15] | Jule Ma, Peiwen Xiao, Pingmei Wang, Xue Han, Jianhui Luo, Ruifang Shi, Xuan Wang, Xianyu Song, Shuangliang Zhao. Molecular dynamics simulation study on π-π stacking of Gemini surfactants in oil/water systems [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 335-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||