[1] E. D. Sloan, C. A. Koh, Clathrate hydrates of natural gases, 3rd ed CRC Press, 2008. [2] E.D. Sloan Jr, Fundamental principles and applications of natural gas hydrates, Nature 426 (6964) (2003) 353-363. [3] E. Kim, S. Lee, J.D. Lee, Y. Seo, Influences of large molecular alcohols on gas hydrates and their potential role in gas storage and CO2 sequestration, Chem. Eng. J. 267 (2015) 117-123. [4] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4 (4) (2011) 1206-1215. [5] Y. Xie, R. Li, X.H. Wang, T. Zheng, J.L. Cui, Q. Yuan, H.B. Qin, C.Y. Sun, G.J. Chen, Review on the accumulation behavior of natural gas hydrates in porous sediments, J. Nat. Gas Sci. Eng. 83 (2020) 103520. [6] C.G. Xu, X.S. Li, K.F. Yan, X.K. Ruan, Z.Y. Chen, Z.M. Xia, Research progress in hydrate-based technologies and processes in China: A review, Chin. J. Chem. Eng. 27 (9) (2019) 1998-2013. [7] E. Chaturvedi, S. Laik, A. Mandal, A comprehensive review of the effect of different kinetic promoters on methane hydrate formation, Chin. J. Chem. Eng. 32 (2021) 1-16. [8] B.Y. Zhang, Y.P. Cheng, Q. Wu, Sponge effect on coal mine methane separation based on clathrate hydrate method, Chin. J. Chem. Eng. 19 (4) (2011) 610-614. [9] C.Y. Sun, W.Z. Li, X. Yang, F.G. Li, Q. Yuan, L. Mu, J. Chen, B. Liu, G.J. Chen, Progress in research of gas hydrate, Chin. J. Chem. Eng. 19 (1) (2011) 151-162. [10] J.N. Zheng, F.B. Cheng, Y.P. Li, X. Lu, M.J. Yang, Progress and trends in hydrate based desalination (HBD) technology: A review, Chin. J. Chem. Eng. 27 (9) (2019) 2037-2043. [11] J.L. Zhang, X. Liu, S. Liu, Y.X. Li, Q.H. Hu, W.C. Wang, Microscopic morphology evolution of the crystal structure of tetrahydrofuran hydrate under flowing condition, Chin. J. Chem. Eng. 45 (2022) 103-110. [12] W. Ke, D.Y. Chen, A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists, Chin. J. Chem. Eng. 27 (9) (2019) 2049-2061. [13] G. Bhattacharjee, H.P. Veluswamy, A. Kumar, P. Linga, Stability analysis of methane hydrates for gas storage application, Chem. Eng. J. 415 (2021) 128927. [14] L. Stern, S. Circone, S. Kirby, W. Durham, Anomalous preservation of pure methane hydrate at 1 atm, J. Phys. Chem. B 105 (2001) 1756-1762. [15] S. Takeya, W. Shimada, Y. Kamata, T. Ebinuma, T. Uchida, J. Nagao, H. Narita, In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate, J. Phys. Chem. A 105 (42) (2001) 9756-9759. [16] L.A. Stern, S. Circone, S.H. Kirby, W.B. Durham, Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates, Can. J. Phys. 81 (1-2) (2003) 271-283. [17] S. Takeya, T. Ebinuma, T. Uchida, J. Nagao, H. Narita, Self-preservation effect and dissociation rates of CH4 hydrate, J. Cryst. Growth 237 (2002) 379-382. [18] X.L. Wang, G.J. Chen, C.Y. Sun, L.Y. Yang, Q.L. Ma, J. Chen, P. Liu, X.L. Tang, H.W. Zhao, W.D. Chen, The dependence of the dissociation rate of methane-SDS hydrate below ice point on its manners of forming and processing, Chin. J. Chem. Eng. 17 (1) (2009) 128-135. [19] Y. Xie, T. Zheng, J.R. Zhong, Y.J. Zhu, Y.F. Wang, Y. Zhang, R. Li, Q. Yuan, C.Y. Sun, G.J. Chen, Experimental research on self-preservation effect of methane hydrate in porous sediments, Appl. Energy 268 (2020) 115008. [20] Y. Zhang, T. Wang, X.S. Li, K.F. Yan, Y. Wang, Z.Y. Chen, Decomposition behaviors of methane hydrate in porous media below the ice melting point by depressurization, Chin. J. Chem. Eng. 27 (9) (2019) 2207-2212. [21] S.Y. Misyura, I.G. Donskoy, Dissociation of gas hydrate for a single particle and for a thick layer of particles: The effect of self-preservation on the dissociation kinetics of the gas hydrate layer, Fuel 314 (2022) 122759. [22] X.B. Zhou, Q. Zhang, Z. Long, D.Q. Liang, In situ PXRD analysis on the kinetic effect of PVP-K90 and PVCap on methane hydrate dissociation below ice point, Fuel 286 (2021) 119491. [23] S Takeya, A Yoneyama, K Ueda, H Mimachi, M Takahashi, K Sano, Anomalously Preserved Clathrate Hydrate of Natural Gas in Pellet Form at 253 K, J Phys Chem C. 2012;116(26): 13842-13848. [24] S. Takeya, H. Mimachi, T. Murayama, Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions, Appl. Energy 230 (2018) 86-93. [25] Y.P. Handa, Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton, J. Chem. Thermodyn. 18 (9) (1986) 891-902. [26] Q Zhang, The hydrates dissociation rate measurement for natural gas recovery from hydrates sediment, In: Conference the Hydrates Dissociation Rate Measurement for Natural Gas Recovery from Hydrates Sediment. IEEE, p. 1-4. [27] H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci. 118 (2014) 208-213. [28] A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Ancharov, M.A. Sheromov, A.N. Nesterov, Gas hydrates of argon and methane synthesized at high pressures: Composition, thermal expansion, and self-preservation, J. Phys. Chem. B 110 (6) (2006) 2840-2846. [29] W. Shimada, S. Takeya, Y. Kamata, T. Uchida, J. Nagao, T. Ebinuma, H. Narita, Texture change of ice on anomalously preserved methane clathrate hydrate, J. Phys. Chem. B 109 (12) (2005) 5802-5807. [30] L.Y. Ding, C.Y. Geng, Y.H. Zhao, X.F. He, H. Wen, Molecular dynamics simulation for surface melting and self-preservation effect of methane hydrate, Sci. China Ser. B Chem. 51 (7) (2008) 651-660. [31] S. Takeya, J.A. Ripmeester, Dissociation behavior of clathrate hydrates to ice and dependence on guest molecules, Angew. Chem. Int. Ed Engl. 47 (7) (2008) 1276-1279. [32] S. Takeya, A. Yoneyama, K. Ueda, K. Hyodo, T. Takeda, H. Mimachi, M. Takahashi, T. Iwasaki, K. Sano, H. Yamawaki, Y. Gotoh, Nondestructive imaging of anomalously preserved methane clathrate hydrate by phase contrast X-ray imaging, J. Phys. Chem. C 115 (32) (2011) 16193-16199. [33] H. Ohno, I. Oyabu, Y. Iizuka, T. Hondoh, H. Narita, J. Nagao, Dissociation behavior of C2H6 hydrate at temperatures below the ice point: Melting to liquid water followed by ice nucleation, J. Phys. Chem. A 115 (32) (2011) 8889-8894. [34] V.P. Mel’nikov, A.N. Nesterov, A.M. Reshetnikov, Formation of supercooled water upon dissociation of propane hydrates at T < 270 K, Dokl. Phys. Chem. 417 (1) (2007) 304-307. [35] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, A.G. Zavodovsky, Evidence of liquid water formation during methane hydrates dissociation below the ice point, Chem. Eng. Sci. 64 (6) (2009) 1160-1166. [36] C Y Sun, G J Chen. Methane hydrate dissociation above 0 ℃ and below 0 ℃. Fluid Phase Equilib. 2006; 242(2): 123-128. [37] P.Y. Zhang, Y. Wang, R. Jia, J. Lei, Y.M. Li, W. Guo, Dissociation characteristic of methane hydrate in clayey silt below the ice point, J. Nat. Gas Sci. Eng. 100 (2022) 104443. [38] G.C. Zhang, R.E. Rogers, Ultra-stability of gas hydrates at 1atm and 268.2K, Chem. Eng. Sci. 63 (8) (2008) 2066-2074. [39] S.Y. Misyura, The influence of porosity and structural parameters on different kinds of gas hydrate dissociation, Sci. Rep. 6 (2016) 30324. [40] E. Chuvilin, B. Bukhanov, D. Davletshina, S. Grebenkin, V. Istomin, Dissociation and self-preservation of gas hydrates in permafrost, Geosciences 8 (12) (2018) 431. [41] S. Takeya, T. Uchida, J. Nagao, R. Ohmura, W. Shimada, Y. Kamata, T. Ebinuma, H. Narita, Particle size effect of CH 4 hydrate for self-preservation, Chem. Eng. Sci. 60 (5) (2005) 1383-1387. [42] V.E. Nakoryakov, S.Y. Misyura, The features of self-preservation for hydrate systems with methane, Chem. Eng. Sci. 104 (2013) 1-9. [43] T. Uchida, M. Kida, J. Nagao, Dissociation termination of methane-ethane hydrates in temperature-ramping tests at atmospheric pressure below the melting point of ice, Chemphyschem 12 (9) (2011) 1652-1656. [44] J. Chen, J.J. Wu, Y.S. Zeng, Z.K. Liang, G.J. Chen, B. Liu, Z. Li, B. Deng, Self-preservation effect exceeding 273.2 K by introducing deuteriumoxide to form methane hydrate, Chem. Eng. J. 433 (2022) 134591. [45] R.H. Sun, M.J. Yang, Y.C. Song, Effect of NaCl concentration on depressurization-induced methane hydrate dissociation near ice-freezing point: Associated with metastable phases, J. Nat. Gas Sci. Eng. 96 (2021) 104304. [46] P.S.R. Prasad, B.S. Kiran, Self-preservation and stability of methane hydrates in the presence of NaCl, Sci. Rep. 9 (1) (2019) 5860. [47] H. Mimachi, S. Takeya, Y. Gotoh, A. Yoneyama, K. Hyodo, T. Takeda, T. Murayama, Dissociation behaviors of methane hydrate formed from NaCl solutions, Fluid Phase Equilib. 413 (2016) 22-27. [48] D. Shin, M.J. Cha, Y. Yang, S. Choi, Y. Woo, J. Lee, D. Ahn, J. Im, Y. Lee, O. H. Han, J. Yoon, Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments. Geophys Res Lett. 2017, 44 (5) 2129-2137. [49] H. Sato, T. Tsuji, T. Nakamura, K. Uesugi, T. Kinoshita, M. Takahashi, H. Mimachi, T. Iwasaki, K. Ohgaki, Preservation of methane hydrates prepared from dilute electrolyte solutions, Int. J. Chem. Eng. 2009 (2009) 843274. [50] H. Sato, H. Sakamoto, S. Ogino, H. Mimachi, T. Kinoshita, T. Iwasaki, K. Sano, K. Ohgaki, Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution, Chem. Eng. Sci. 91 (2013) 86-89. [51] Y. Xie, Y.J. Zhu, L.W. Cheng, T. Zheng, J.R. Zhong, P. Xiao, C.Y. Sun, G.J. Chen, J.C. Feng, The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation, Energy 262 (2023) 125461. [52] Y.J. Zhu, Y. Xie, J.R. Zhong, Y.J. Zhu, X.H. Wang, P. Xiao, Y.F. Sun, X.X. Li, C.Y. Sun, G.J. Chen, In situ investigation on the morphology and formation kinetics of a CO2/N2 mixed hydrate film, ACS Sustainable Chem. Eng. 11 (12) (2023) 4678-4689. [53] D.L. Li, D.Q. Liang, S.S. Fan, H. Peng, Estimation of ultra-stability of methane hydrate at 1 atm by thermal conductivity measurement, J. Nat. Gas Chem. 19 (3) (2010) 229-233. [54] Y. Xie, Y.J. Zhu, T. Zheng, Q. Yuan, C.Y. Sun, L.Y. Yang, G.J. Chen, Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate, Chem. Eng. J. 403 (2021) 126283. [55] W.F. Kuhs, G. Genov, D.K. Staykova, T. Hansen, Ice perfection and onset of anomalous preservation of gas hydrates, Phys. Chem. Chem. Phys. 6 (21) (2004) 4917-4920. [56] X. Xue, Z.Z. He, J. Liu, Detection of water-ice phase transition based on Raman spectrum, J. Raman Spectrosc. 44 (7) (2013) 1045-1048. [57] Y.J. Zhu, Y. Xie, J.R. Zhong, X.H. Wang, P. Xiao, C.Y. Sun, G.J. Chen, Mini review on application and outlook of In situ Raman spectrometry in gas hydrate research, Energy Fuels 36 (18) (2022) 10430-10443. [58] H.S. Truong-Lam, S. Lee, C.J. Jeon, S. Seo, K. Kang, J.D. Lee, Effects of salinity on hydrate phase equilibrium and kinetics of SF6, HFC134a, and their mixture, J. Chem. Eng. Data 66 (5) (2021) 2295-2302. [59] A. Kumar, H.P. Veluswamy, S. Kumar, R. Kumar, P. Linga, In situ characterization of mixed CH4-THF hydrates formed from seawater: High-pressure calorimetric and spectroscopic analysis, J. Phys. Chem. C 125 (30) (2021) 16435-16443. [60] M.J. Cha, Y. Hu, A.K. Sum, Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl, Fluid Phase Equilib. 413 (2016) 2-9. [61] V.K. Saw, I. Ahmad, A. Mandal, G. Udayabhanu, S. Laik, Methane hydrate formation and dissociation in synthetic seawater, J. Nat. Gas Chem. 21 (6) (2012) 625-632. [62] P.D. Dholabhai, N. Kalogerakis, P.R. Bishnoi, Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions, J. Chem. Eng. Data 38 (4) (1993) 650-654. [63] X.Y. Li, D.L. Zhong, P. Englezos, Y.Y. Lu, J. Yan, S.L. Qing, Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC, J. Nat. Gas Sci. Eng. 86 (2021) 103738. |