[1] E.D. Sloan Jr, C.A. Koh, C.A. Koh, Clathrate Hydrates of Natural Gases. Boca Raton: CRC Press, (2007). [2] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4 (4) (2011) 1206-1215. [3] A.K. Sum, C.A. Koh, E.D. Sloan, Clathrate hydrates: From laboratory science to engineering practice, Ind. Eng. Chem. Res. 48 (16) (2009) 7457-7465. [4] S.M. Lu, A global survey of gas hydrate development and reserves: Specifically in the marine field, Renew. Sustain. Energy Rev. 41 (2015) 884-900. [5] Z.R. Chong, G.A. Pujar, M.J. Yang, P. Linga, Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery, Appl. Energy 177 (2016) 409-421. [6] J.C. Feng, Y. Wang, X.S. Li, Z.Y. Chen, G. Li, Y. Zhang, Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir, Appl. Energy 154 (2015) 995-1003. [7] Y.F. Sun, J.R. Zhong, W.Z. Li, Y.M. Ma, R. Li, T. Zhu, L.L. Ren, G.J. Chen, C.Y. Sun, Methane recovery from hydrate-bearing sediments by the combination of ethylene glycol injection and depressurization, Energy Fuels 32 (7) (2018) 7585-7594. [8] J.F. Zhao, Y.L. Liu, X.W. Guo, R.P. Wei, T.B. Yu, L. Xu, L.J. Sun, L. Yang, Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization, Appl. Energy 260 (2020) 114275. [9] Y.F. Sun, J.R. Zhong, R. Li, T. Zhu, X.Y. Cao, G.J. Chen, X.H. Wang, L.Y. Yang, C.Y. Sun, Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode, Appl. Energy 226 (2018) 10-21. [10] Y.F. Sun, J.R. Zhong, G.J. Chen, B.J. Cao, R. Li, D.Y. Chen, A new approach to efficient and safe gas production from unsealed marine hydrate deposits, Appl. Energy 282 (2021) 116259. [11] N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues, J. Petrol. Sci. Eng. 51 (3-4) (2006) 169-184. [12] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46 (11-12) (2005) 1680-1691. [13] B.R. Lee, C.A. Koh, A.K. Sum, Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2, Phys. Chem. Chem. Phys. 16 (28) (2014) 14922-14927. [14] Y. Park, D.Y. Kim, J.W. Lee, D.G. Huh, K.P. Park, J. Lee, H.E. Lee, Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates, Proc. Natl. Acad. Sci. USA 103 (34) (2006) 12690-12694. [15] J.M. Schicks, M. Luzi, B. Beeskow-Strauch, The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: Thermodynamic considerations, J. Phys. Chem. A 115 (46) (2011) 13324-13331. [16] M.J. Cha, K. Shin, H.E. Lee, I.L. Moudrakovski, J.A. Ripmeester, Y. Seo, Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy, Environ. Sci. Technol. 49 (3) (2015) 1964-1971. [17] H.E. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed Engl. 42 (41) (2003) 5048-5051. [18] D.S. Bai, X.R. Zhang, G.J. Chen, W.C. Wang, Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations, Energy Environ. Sci. 5 (5) (2012) 7033-7041. [19] A. Falenty, J. Qin, A.N. Salamatin, L. Yang, W.F. Kuhs, Fluid composition and kinetics of the in situ replacement in CH4-CO2 hydrate system, J. Phys. Chem. C 120 (48) (2016) 27159-27172. [20] A.N. Salamatin, A. Falenty, W.F. Kuhs, Diffusion model for gas replacement in an isostructural CH4-CO2 hydrate system, J. Phys. Chem. C 121 (33) (2017) 17603-17616. [21] P.L. Stanwix, N.M. Rathnayake, F.P.P. de Obanos, M.L. Johns, Z.M. Aman, E.F. May, Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments, Energy Environ. Sci. 11 (7) (2018) 1828-1840. [22] Y.F. Sun, Y.F. Wang, J.R. Zhong, W.Z. Li, R. Li, B.J. Cao, J.Y. Kan, C.Y. Sun, G.J. Chen, Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode, Appl. Energy 240 (2019) 215-225. [23] S.L. Li, G.B. Zhang, Z.X. Dai, S.H. Jiang, Y.H. Sun, Concurrent decomposition and replacement of marine gas hydrate with the injection of CO2-N2, Chem. Eng. J. 420 (2021) 129936. [24] X.H. Wang, Y.F. Sun, Y.F. Wang, N. Li, C.Y. Sun, G.J. Chen, B. Liu, L.Y. Yang, Gas production from hydrates by CH4-CO2/H2 replacement, Appl. Energy 188 (2017) 305-314. [25] David Schoderbek, Oil & Natural Gas Technology First Half 2012 ConocoPhillips Gas Hydrate, (2012). [26] D. Schoderbek, H. Farrell, J. Howard, K. Raterman, S. Silpngarmlert, K. Martin, B. Smith, P. Klein, ConocoPhillips gas hydrate production test, Pittsburgh, PA, and Morgantown, WV (United States), 2013. [27] Y. Lee, Y. Kim, J. Lee, H.E. Lee, Y. Seo, CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter, Appl. Energy 150 (2015) 120-127. [28] M.H. Waage, T.T. Trinh, T.S. van Erp, Diffusion of gas mixtures in the sI hydrate structure, J. Chem. Phys. 148 (21) (2018) 214701. [29] Y.H. Sun, G.B. Zhang, S.L. Li, S.H. Jiang, CO2/N2 injection into CH4 + C3H8 hydrates for gas recovery and CO2 sequestration, Chem. Eng. J. 375 (2019) 121973. [30] Y. Xie, T. Zheng, Y.J. Zhu, J.R. Zhong, J.C. Feng, C.Y. Sun, G.J. Chen, Effects of H2/N2 on CO2 hydrate film growth: Morphology and microstructure, Chem. Eng. J. 431 (2022) 134004. [31] Y.J. Zhu, Y. Xie, J.R. Zhong, Y.J. Zhu, X.H. Wang, P. Xiao, Y.F. Sun, X.X. Li, C.Y. Sun, G.J. Chen, In situ investigation on the morphology and formation kinetics of a CO2/N2 mixed hydrate film, ACS Sustainable Chem. Eng. 11 (12) (2023) 4678-4689. [32] Y.H. Mori, T. Mochizuki, Mass transport across clathrate hydrate films-a capillary permeation model, Chem. Eng. Sci. 52 (20) (1997) 3613-3616. [33] X.H. Sun, Z.Y. Wang, B.J. Sun, L.T. Chen, J.B. Zhang, Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions, Chem. Eng. J. 331 (2018) 221-233. [34] S.R. Davies, J.W. Lachance, E.D. Sloan, C.A. Koh, High-pressure differential scanning calorimetry measurements of the mass transfer resistance across a methane hydrate film as a function of time and subcooling, Ind. Eng. Chem. Res. 49 (23) (2010) 12319-12326. [35] Y. Abe, X. Ma, T. Yanai, K. Yamane, Development of formation and growth models of CO2 hydrate film, AlChE. J. 62 (11) (2016) 4078-4089. [36] S.R. Davies, E.D. Sloan, A.K. Sum, C.A. Koh, In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy, J. Phys. Chem. C 114 (2) (2010) 1173-1180. [37] S.L. Li, C.Y. Sun, B. Liu, Z.Y. Li, G.J. Chen, A.K. Sum, New observations and insights into the morphology and growth kinetics of hydrate films, Sci. Rep. 4 (2014) 4129. [38] P. Servio, P. Englezos, Morphology of methane and carbon dioxide hydrates formed from water droplets, AlChE. J. 49 (1) (2003) 269-276. [39] X.Y. Zeng, G.Z. Wu, J.R. Zhong, D.Y. Chen, C.Y. Sun, G.J. Chen, Three-scale in situ investigation on the film morphology and mass transfer channels during the thickening growth of hydrates on gas bubble, Cryst. Growth Des. 19 (6) (2019) 3158-3165. [40] D. Daniel-David, F. Guerton, C. Dicharry, J.P. Torre, D. Broseta, Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants, Chem. Eng. Sci. 132 (2015) 118-127. [41] J.R. Zhong, Y.F. Sun, Y. Xie, C.Y. Sun, G.J. Chen, W. Yan, Effect of N2/H2 injection on CH4 hydrate decomposition, Chem. Eng. J. 396 (2020) 125266. [42] S.L. Li, C.Y. Sun, B. Liu, X.J. Feng, F.G. Li, L.T. Chen, G.J. Chen, Initial thickness measurements and insights into crystal growth of methane hydrate film, AlChE. J. 59 (6) (2013) 2145-2154. [43] C.J. Taylor, K.T. Miller, C.A. Koh, E.D. Sloan, Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface, Chem. Eng. Sci. 62 (23) (2007) 6524-6533. [44] G.J. Chen, T.M. Guo, Thermodynamic modeling of hydrate formation based on new concepts, Fluid Phase Equilib. 122 (1-2) (1996) 43-65. [45] P. Englezos, N. Kalogerakis, P.D. Dholabhai, P.R. Bishnoi, Kinetics of formation of methane and ethane gas hydrates, Chem. Eng. Sci. 42 (11) (1987) 2647-2658. [46] F. Al-Otaibi, M. Clarke, B. Maini, P.R. Bishnoi, Formation kinetics of structure I clathrates of methane and ethane using an in situ particle size analyzer, Energy Fuels 24 (9) (2010) 5012-5022. [47] S. Sharma, Kinetics of gas hydrate formation: Particle size measurements, 1996. [48] M.B. Malegaonkar, P.D. Dholabhai, P.R. Bishnoi, Kinetics of carbon dioxide and methane hydrate formation, Can. J. Chem. Eng. 75 (6) (1997) 1090-1099. [49] M.A. Clarke, P.R. Bishnoi, Determination of the intrinsic kinetics of CO2 gas hydrate formation using in situ particle size analysis, Chem. Eng. Sci. 60 (3) (2005) 695-709. [50] S. Hashemi, A. Macchi, P. Servio, Gas hydrate growth model in a semibatch stirred tank reactor, Ind. Eng. Chem. Res. 46 (18) (2007) 5907-5912. [51] S. Bergeron, J.G. Beltran, P. Servio, Reaction rate constant of methane clathrate formation, Fuel 89 (2) (2010) 294-301. |