Chinese Journal of Chemical Engineering ›› 2024, Vol. 73 ›› Issue (9): 154-162.DOI: 10.1016/j.cjche.2024.05.005
Previous Articles Next Articles
Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu
Received:
2024-04-25
Revised:
2024-05-08
Accepted:
2024-05-10
Online:
2024-05-21
Published:
2024-11-21
Contact:
Liangfang Zhu,E-mail:zhulf@scu.edu.cn
Supported by:
Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu
通讯作者:
Liangfang Zhu,E-mail:zhulf@scu.edu.cn
基金资助:
Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 154-162.
Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural[J]. 中国化学工程学报, 2024, 73(9): 154-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.05.005
[1] R.Y. Zheng, Z.C. Liu, Y.D. Wang, Z.K. Xie, M.Y. He, The future of green energy and chemicals: Rational design of catalysis routes, Joule 6 (6) (2022) 1148-1159. [2] T. Zhang, Taking on all of the biomass for conversion, Science 367 (6484) (2020) 1305-1306. [3] C.R. Yang, J.X. Qin, S.X. Sun, D.M. Gao, Y. Fang, G. Chen, C.J. Tian, C.J. Bao, S.T. Zhang, Progress in developing methods for lignin depolymerization and elucidating the associated mechanisms, Eur. Polym. J. 210 (2024) 112995. [4] W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Catalytic conversion of lignocellulosic biomass into chemicals and fuels, Green Energy Environ. 8 (1) (2022) 10-114. [5] M. Gholizadeh, X. Hu, Progress in understanding the coking behavior of typical catalysts in the catalytic pyrolysis of biomass, Sustainable Energy Fuels 6 (9) (2022) 2113-2148. [6] Q.Y. Liu, T. Zhang, Y.H. Liao, C.L. Cai, J. Tan, T.J. Wang, S.B. Qiu, M.H. He, L.L. Ma, Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C, ACS Sustainable Chem. Eng. 5 (7) (2017) 5940-5950. [7] Y.T. Zhu, Y.H. Liao, L.Y. Lu, W. Lv, J. Liu, X.B. Song, J.C. Wu, L. Li, C.G. Wang, L.L. Ma, B.F. Sels, Oxidative catalytic fractionation of lignocellulose to high-yield aromatic aldehyde monomers and pure cellulose, ACS Catal. 13 (12) (2023) 7929-7941. [8] W.Z. He, G.M. Li, L.Z. Kong, H. Wang, J.W. Huang, J.C. Xu, Application of hydrothermal reaction in resource recovery of organic wastes, Resour. Conserv. Recycl. 52 (5) (2008) 691-699. [9] K.I. Galkin, V.P. Ananikov, When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken? ChemSusChem 12 (13) (2019) 2976-2982. [10] L. Li, H. Yue, S. Zhang, Y. Huang, W. Zhang, P. Wu, Y. Ji, F. Huo, Solving the water hypersensitive challenge of sulfated solid superacid in acid-catalyzed reactions, ACS Appl Mater Interfaces 11 (10) (2019) 9919-9924. [11] L. Zhu, X. Fu, Y. Hu, C. Hu, Controlling the reaction networks for efficient conversion of glucose into 5-hydroxymethylfurfural, ChemSusChem 13 (18) (2020) 4812-4832. [12] Z.Y. Zhou, D.H. Liu, X.B. Zhao, Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose, Renew. Sustain. Energy Rev. 146 (2021) 111169. [13] B.W. Yu, G.Z. Fan, S.J. Zhao, Y.C. Lu, Q. He, Q.P. Cheng, J.T. Yan, B. Chai, G.S. Song, Simultaneous isolation of cellulose and lignin from wheat straw and catalytic conversion to valuable chemical products, Appl. Biol. Chem. 64 (1) (2021) 15. [14] P. Wanninayake, M. Rathnayake, D. Thushara, S. Gunawardena, Conversion of rice straw into 5-hydroxymethylfurfural: Review and comparative process evaluation, Biomass Convers. Biorefin. 12 (3) (2022) 1013-1047. [15] Y.N. Wei, Y.L. Zhang, B. Li, W. Guan, C.H. Yan, X. Li, Y.S. Yan, Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 44 (2022) 169-181. [16] C.J. Wei, G. Liu, Y.J. Xie, Z.Y. Sun, C. Liu, F. Song, H.Y. Cui, Cellulose dissolution and conversion into 5-hydroxymethylfurfural in mixed molten salt hydrate, Cellulose 30 (2) (2023) 801-813. [17] M. Elsakhawy, M. Hassan, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydr. Polym. 67 (1) (2007) 1-10. [18] Q.D. Hou, C. Bai, X.Y. Bai, H.L. Qian, Y.F. Nie, T.L. Xia, R.T. Lai, G.J. Yu, M.L.U. Rehman, M.T. Ju, Roles of ball milling pretreatment and titanyl sulfate in the synthesis of 5-hydroxymethylfurfural from cellulose, ACS Sustainable Chem. Eng. 10 (3) (2022) 1205-1213. [19] A. Rezayan, K. Wang, R.F. Nie, J.S. Wang, T.L. Lu, Y.S. Zhang, C.C. Xu, Eco-friendly preparation of phosphated Gallia: A tunable dual-acidic catalyst for the efficient 5-hydroxymethylfurfural production from carbohydrates, J. Catal. 414 (2022) 186-198. [20] Q.D. Hou, C. Bai, X.Y. Bai, H.L. Qian, Y.F. Nie, T.L. Xia, R.T. Lai, G.J. Yu, M.L.U. Rehman, M.T. Ju, Roles of ball milling pretreatment and titanyl sulfate in the synthesis of 5-hydroxymethylfurfural from cellulose, ACS Sustainable Chem. Eng. 10 (3) (2022) 1205-1213. [21] X.Y. Zhang, D. Zhang, Z. Sun, L.F. Xue, X.H. Wang, Z.J. Jiang, Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction, Appl. Catal. B Environ. 196 (2016) 50-56. [22] Q. Wu, G.Y. Zhang, M.M. Gao, S.S. Cao, L. Li, S.W. Liu, C.X. Xie, L. Huang, S.T. Yu, A.J. Ragauskas, Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst, J. Clean. Prod. 213 (2019) 1096-1102. [23] S. Liu, W. Zheng, X. Wen, Z. Fang, H. Li, C. Li, J. Fang, Molecular design and experimental study of cellulose conversion to 5-hydroxymethylfurfural catalyzed by different ratios of Broensted/Lewis acid ionic liquids, Carbohydr Polym 278 (2022) 118936. [24] W. Sun, X. Wei, W. Li, X. Zhang, H. Wei, S. Liu, L. Ma, Numerical studies on cellulose hydrolysis in organic-liquid-solid phase systems with a liquid membrane catalysis model, ACS Omega 7 (2) (2022) 2286-2303. [25] Y. Zhou, Y.C. Shao, D. Zhou, Y.J. Meng, D.S. Shen, Y.Y. Long, Effect of mechano-chemical pretreatment on valorizing plant waste for 5-hydroxymethylfurfural under microwave hydrothermal treatment, Renew. Energy 180 (2021) 536-543. [26] F. Shen, S. Sun, X. Zhang, J.R. Yang, M. Qiu, X.H. Qi, Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose, Cellulose 27 (6) (2020) 3013-3023. [27] X.L. Zhang, W.H. Yang, W. Blasiak, Modeling study of woody biomass: Interactions of cellulose, hemicellulose, and lignin, Energy Fuels 25 (10) (2011) 4786-4795. [28] Y. Zhao, U. Shakeel, M. Saif Ur Rehman, H.Q. Li, X. Xu, J. Xu, Lignin-carbohydrate complexes (LCCs) and its role in biorefinery, J. Clean. Prod. 253 (2020) 120076. [29] C. Jin, M. Yang, S. E, J. Liu, S. Zhang, X. Zhang, K. Sheng, X. Zhang, Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production, Bioresour Technol 299 (2020) 122586. [30] X.B. Zhao, K.K. Cheng, D.H. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Appl. Microbiol. Biotechnol. 82 (5) (2009) 815-827. [31] Q. Wang, X.S. Zhuang, W. Wang, X.S. Tan, Q. Yu, W. Qi, Z.H. Yuan, Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system, Chem. Eng. J. 334 (2018) 698-706. [32] Y.P. Luo, Z.C. Zhao, B. Jiang, M. Wei, Z. Zhang, L.S. Zeng, J.H. Clark, J.J. Fan, An integrated process for the valorization of corn stover promoted by NaCl in a GVL/H2O system, Green Chem. 24 (4) (2022) 1515-1526. [33] G. Dedes, A. Karnaouri, A.A. Marianou, K.G. Kalogiannis, C.M. Michailof, A.A. Lappas, E. Topakas, Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis, Biotechnol Biofuels 14 (1) (2021) 172. [34] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (8) (2009) 3713-3729. [35] F.P. Yao, F. Shen, X. Wan, C.W. Hu, High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis, Renew. Sustain. Energy Rev. 132 (2020) 110107. [36] S. Ma, Z. Li, J. Sperry, X. Tang, Y. Sun, L. Lin, J. Liu, X.H. Zeng, CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose, Green Energy Environ. 5(2023): https://doi.org/10.1016/j.gee.2023.05.009. [37] K. Karimi, M.J. Taherzadeh, A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity, Bioresour Technol 200 (2016) 1008-1018. [38] L. Segal, J.J. Creely, A.E. Martin Jr, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (10) (1959) 786-794. [39] W. Mo, K. Chen, X. Yang, F. Kong, J. Liu, B. Li, Elucidating the hornification mechanism of cellulosic fibers during the process of thermal drying, Carbohydr Polym 289 (2022) 119434. [40] L. Shuai, J. Luterbacher, Organic solvent effects in biomass conversion reactions, ChemSusChem 9 (2) (2016) 133-155. [41] A. Duereh, Y. Sato, R.L. Smith Jr, H. Inomata, Analysis of the cybotactic region of two renewable lactone-water mixed-solvent systems that exhibit synergistic kamlet-taft basicity, J. Phys. Chem. B 120 (19) (2016) 4467-4481. [42] Z.M. Xue, X.H. Zhao, R.C. Sun, T.C. Mu, Biomass-derived γ-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study, ACS Sustainable Chem. Eng. 4 (7) (2016) 3864-3870. [43] Y.J. Chen, J.Q. Shan, Y.L. Cao, X. Shen, C.L. Tang, M. Li, W. Zhuang, C.J. Zhu, H.J. Ying, Mechanocatalytic depolymerization of hemicellulose to xylooligosaccharides: new insights into the influence of impregnation solvent, Ind. Crops Prod. 180 (2022) 114704. [44] J.V. Vermaas, M.F. Crowley, G.T. Beckham, Molecular lignin solubility and structure in organic solvents, ACS Sustainable Chem. Eng. 8 (48) (2020) 17839-17850. [45] F. Xu, J.M. Yu, T. Tesso, F. Dowell, D.H. Wang, Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review, Appl. Energy 104 (2013) 801-809. [46] Y. Zhong, K.B. Wang, Y.L. Liu, X. Wang, Preparation and characterization of Salix Psammophila cellulose and Mic-cellulose under the pretreatment of two kinds of acid, J. Phys.: Conf. Ser. 1605 (1) (2020) 012165. [47] P. Bock, P. Nousiainen, T. Elder, M. Blaukopf, H. Amer, R. Zirbs, A. Potthast, N. Gierlinger, Infrared and Raman spectra of lignin substructures: Dibenzodioxocin, J Raman Spectrosc 51 (3) (2020) 422-431. [48] M. Makarem, C.M. Lee, K. Kafle, S.X. Huang, I. Chae, H. Yang, J.D. Kubicki, S.H. Kim, Probing cellulose structures with vibrational spectroscopy, Cellulose 26 (1) (2019) 35-79. [49] H. Zhang, X. Liu, J. Li, Z. Jiang, C. Hu, Performances of several solvents on the cleavage of inter- and intramolecular linkages of lignin in corncob residue, ChemSusChem 11 (9) (2018) 1494-1504. [50] N.A. Chohan, G.S. Aruwajoye, Y. Sewsynker-Sukai, E.B. Gueguim Kana, Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment, Renew. Energy 146 (2020) 1031-1040. [51] R.H. Newman, Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp, Cellulose 11 (1) (2004) 45-52. [52] Y. Liu, H.Q. Fu, W. Zhang, H.C. Liu, Effect of crystalline structure on the catalytic hydrolysis of cellulose in subcritical water, ACS Sustainable Chem. Eng. 10 (18) (2022) 5859-5866. [53] A. Al Ghatta, X.Y. Zhou, G. Casarano, J. Wilton-Ely, J. Hallett, Characterization and valorization of humins produced by HMF degradation in ionic liquids: A valuable carbonaceous material for antimony removal, ACS Sustain. Chem. & Eng. 9 (2021) 2212-2223. [54] R. Zhang, H. Gao, Y. Wang, B. He, J. Lu, W. Zhu, L. Peng, Y. Wang, Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction, Bioresour Technol 369 (2023) 128315. |
[1] | Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong. Hydrophobic CHA-ZIFs with a junctional trap between cha and d6r cages for adsorption of 2,3-butanediol in aqueous solution [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 90-100. |
[2] | Yuntao Liang, Yongjing Wang, Wenbin Feng, Jingkai Xu, Wei Xiao. A nonwoven supported mixed matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 101-108. |
[3] | Wenwen Gao, Yuhuan Wang, Wang Li, Zhifang Zhang, Ting Su, Miao Mu, Ying Gong, Rui Dang, Rui Bai, E Zheng, Wei Zhao. A Z-scheme LaFeO3-CuFe2O4 composite for sulfate radical-based photocatalytic process: Synergistic effect and mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 256-269. |
[4] | Hongmei Wu, Xinyu Liu, Yu Guo. Preparation of a zeolite-palladium composite membrane for hydrogen separation: Influence of zeolite film on membrane stability [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 44-52. |
[5] | Xin Li, Yue Ma, Xuning Wang, Jianguo Wu, Dong Cao, Daojian Cheng. Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 60-68. |
[6] | Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong. Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 24-44. |
[7] | Yanran Zhu, Yue Zhou, Qian Chen, Rongqiang Fu, Zhaoming Liu, Liang Ge, Tongwen Xu. Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 45-57. |
[8] | Junyang Li, Roberta Campardelli, Giuseppe Firpo, Jingtao Zhang, Patrizia Perego. Oil-in-water nanoemulsions loaded with lycopene extracts encapsulated by spray drying: Formulation, characterization and optimization [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 73-81. |
[9] | Jie Zhang, Xingzhe Guo, Bing Lin, Guangzu Xiong, Hanshuang Wang, Min Zhang, Liwen Fan, Bingwen Li, Shuisheng Chen. Efficient adsorption separation of methane from C2-C3 hydrocarbons in a Co(II)-nodes metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 192-198. |
[10] | Yuehua Yao, Fan Wang, Yinguang Xu, Zishuai Xu, Lizhen Chen, Jianlong Wang. Solubility determination and comparison of β-HMX and RDX in two binary mixed solvents (acetonitrile + water, nitric acid + water) [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 238-249. |
[11] | Lianjie Wu, Kun Lu, Qirui Li, Lianghua Xu, Yiqing Luo, Xigang Yuan. Energy-saving design and optimization of pressure-swing-assisted ternary heterogenous azeotropic distillations [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 1-7. |
[12] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
[13] | Pengzhi Bei, Rui Zhang, Jie Feng, Antony Rajendran, Wenying Li. Optimizing extractants selection for efficient separation of phenols and nitrogen-containing heteroaromatics using hydrogen bond interaction strategies [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 43-52. |
[14] | Peng Jiang, Hao Zhang, Guanhan Zhao, Lin Li, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 231-240. |
[15] | Jiayin Zhang, Lu Zheng, Siqi Fang, Hongwei Zhang, Zhenping Cai, Kuan Huang, Lilong Jiang. Efficient and reversible separation of NH3 by deep eutectic solvents with multiple active sites and low viscosities [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 97-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||