[1] C.A. Wang, Y.H. Liu, X.M. Zhang, D.F. Che, A study on coal properties and combustion characteristics of blended coals in Northwestern China, Energy Fuels 25 (8) (2011) 3634-3645. [2] J.W. Le, P. Liu, D.C. Liu, X.L. Lu, T.Y. Pan, D.X. Zhang, Effect of catalysts on the yields of light components and phenols derived from Shenmu coal low temperature pyrolysis, Energy Fuels 31 (7) (2017) 7033-7041. [3] S.Q. Wang, D.X. Wang, Y.G. Tang, Y.B. Sun, D. Jiang, T. Su, Study of pyrolysis behavior of hydrogen-rich bark coal by TGA and Py-GC/MS, J. Anal. Appl. Pyrolysis 128 (2017) 136-142. [4] K. Zhang, Y. Li, Z.H. Wang, Q. Li, R. Whiddon, Y. He, K.F. Cen, Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures, Fuel 185 (2016) 701-708. [5] Kech Lu Yongkang Chang Liping Xie. Effects of coal structure on its pyrolysis characteristics under N2 and Ar atmosphere, Energy Sources 23 (8) (2001) 717-725. [6] W.J. He, Z.Y. Liu, Q.Y. Liu, D.H. Ci, C. Lievens, X.F. Guo, Behaviors of radical fragments in tar generated from pyrolysis of 4 coals, Fuel 134 (2014) 375-380. [7] W.C. Xia, C.K. Niu, C.C. Ren, Enhancement in floatability of sub-bituminous coal by low-temperature pyrolysis and its potential application in coal cleaning, J. Clean. Prod. 168 (2017) 1032-1038. [8] Z.F. Gao, M.D. Zheng, D.L. Zhang, W.C. Zhang, Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals, J. Energy Inst. 89 (4) (2016) 544-559. [9] L. Ding, Z.J. Zhou, Q.H. Guo, S.J. Lin, G.S. Yu, Gas evolution characteristics during pyrolysis and catalytic pyrolysis of coals by TG-MS and in a high-frequency furnace, Fuel 154 (2015) 222-232. [10] B.H. Yan, C.X. Cao, Y. Cheng, Y. Jin, Y. Cheng, Experimental investigation on coal devolatilization at high temperatures with different heating rates, Fuel 117 (2014) 1215-1222. [11] H.E. Jegers, M.T. Klein, Primary and secondary lignin pyrolysis reaction pathways, Ind. Eng. Chem. Proc. Des. Dev. 24 (1) (1985) 173-183. [12] B. Tian, Y.Y. Qiao, Y.Y. Tian, Q. Liu, Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG-FTIR, J. Anal. Appl. Pyrolysis 121 (2016) 376-386. [13] Y. Jiang, P.J. Zong, B. Tian, F.F. Xu, Y.Y. Tian, Y.Y. Qiao, J.H. Zhang, Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and py-GC/MS, Energy Convers. Manag. 179 (2019) 72-80. [14] Z.Y. Liu, X.J. Guo, L. Shi, W.J. He, J.F. Wu, Q.Y. Liu, J.H. Liu, Reaction of volatiles-A crucial step in pyrolysis of coals, Fuel 154 (2015) 361-369. [15] J.I. Hayashi, H. Takahashi, S. Doi, H. Kumagai, T. Chiba, T. Yoshida, A. Tsutsumi, Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield, Energy Fuels 14 (2) (2000) 400-408. [16] C. Zhang, R.C. Wu, E.F. Hu, S.Y. Liu, G.W. Xu, Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals, Energy Fuels 28 (11) (2014) 7294-7302. [17] L. Luo, W. Yao, J.X. Liu, H. Zhang, J.F. Ma, X.M. Jiang, The effect of the grinding process on pore structures, functional groups and release characteristic of flash pyrolysis of superfine pulverized coal, Fuel 235 (2019) 1337-1346. [18] L. Shi, Q.Y. Liu, X.J. Guo, W.Z. Wu, Z.Y. Liu, Pyrolysis behavior and bonding information of coal-a TGA study, Fuel Process. Technol. 108 (2013) 125-132. [19] M. Sun, M.M. Ma, B. Lv, Q.X. Yao, J.W. Gao, R.C. Wang, Y.J. Zhang, X.X. Ma, Pyrolysis characteristics of ethanol swelling Shendong coal and the composition distribution of its coal tar, J. Anal. Appl. Pyrolysis 138 (2019) 94-102. [20] Q.X. Yao, Y.B. Li, X. Tang, J.W. Gao, R.C. Wang, Y.J. Zhang, M. Sun, X.X. Ma, Separation of petroleum ether extracted residue of low temperature coal tar by chromatography column and structural feature of fractions by TG-FTIR and PY-GC/MS, Fuel 245 (2019) 122-130. [21] M. Sun, Q. Wang, C. He, J.W. Gao, R.C. Wang, Y.J. Zhang, L. Xu, Q.X. Yao, X.X. Ma, Pyrolysis characteristics of Shendong coal by CH3OH-THF swelling coupled with in situ loading of metal ions, Fuel 253 (2019) 409-419. [22] Y.Q. Liu, Q.X. Yao, M. Sun, T.T. Yuan, J.W. Gao, R.C. Wang, Y.J. Zhang, H.Y. Chen, X.X. Ma, Process characteristics and mechanisms for catalyzed pyrolysis of low-temperature coal tar, Energy Fuels 33 (8) (2019) 7052-7061. [23] M. Sun, D. Zhang, Q.X. Yao, Y.Q. Liu, X.P. Su, C.Q. Jia, Q.Q. Hao, X.X. Ma, Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar, Energy Fuels 32 (7) (2018) 7404-7411. [24] M.D. Casal, M.A. Diez, R. Alvarez, C. Barriocanal, Suitability of Gray-King pyrolysis to evaluate coking pressure, J. Anal. Appl. Pyrolysis 79 (1-2) (2007) 161-168. [25] Q.X. Yao, M.L. Du, S.L. Wang, J. Liu, J.L. Yang, H.T. Shang, Distribution of sulfur forms in low temperature pyrolysis of coal, Adv. Mater. Res. 512-515 (2012) 834-837. [26] P.F. Wang, L.J. Jin, J.H. Liu, S.W. Zhu, H.Q. Hu, Analysis of coal tar derived from pyrolysis at different atmospheres, Fuel 104 (2013) 14-21. [27] Y.L. Li, S. Huang, Y.Q. Wu, S.Y. Wu, J.S. Gao, The roles of the low molecular weight compounds in the low-temperature pyrolysis of low-rank coal, J. Energy Inst. 92 (2) (2019) 203-209. [28] C. Lievens, D.H. Ci, Y. Bai, L.G. Ma, R. Zhang, J.Y. Chen, Q.Q. Gai, Y.H. Long, X.F. Guo, A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS, Fuel Process. Technol. 116 (2013) 85-93. [29] D. Zeng, S.T. Hu, A.N. Sayre, H. Sarv, On the rank-dependence of coal tar secondary reactions, Proc. Combust. Inst. 33 (2) (2011) 1707-1714. [30] E.F. Hu, C.Q. Zhu, K. Rogers, X. Han, J. Wang, J. Zhao, X.H. Fu, Coal pyrolysis and its mechanism in indirectly heated fixed-bed with metallic heating plate enhancement, Fuel 185 (2016) 656-662. [31] N. Devanathan, S.C. Saxena, Transport model for devolatilization of large nonplastic coal particles: The effect of secondary reactions, Ind. Eng. Chem. Res. 26 (3) (1987) 539-548. [32] J. Hayashi, T. Kawakami, T. Taniguchi, K. Kusakabe, S. Morooka, M. Yumura, Control of molecular composition of tar by secondary reaction in fluidized-bed pyrolysis of a subbituminous coal, Energy Fuels 7 (1) (1993) 57-66. [33] W.H. Yu, S. Han, Z.P. Lei, K. Zhang, J.C. Yan, Z.K. Li, H.F. Shui, S.G. Kang, Z.C. Wang, S.B. Ren, C.X. Pan, The reaction behavior of volatiles generated from lignite pyrolysis, Fuel 244 (2019) 22-30. [34] J. LeBlanc, J. Quanci, M.J. Castaldi, Investigating secondary pyrolysis reactions of coal tar via mass spectrometry techniques, Energy Fuels 31 (2) (2017) 1269-1275. [35] S. Cheng, D.G. Lai, Z. Shi, L.S. Hong, J.L. Zhang, X. Zeng, S.Q. Gao, G.W. Xu, Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor, Chin. J. Chem. Eng. 25 (4) (2017) 507-515. [36] L. Dong, S. Han, W.H. Yu, Z.P. Lei, S.G. Kang, K. Zhang, J.C. Yan, Z.K. Li, H.F. Shui, Z.C. Wang, S.B. Ren, C.X. Pan, Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal, J. Anal. Appl. Pyrolysis 140 (2019) 321-330. [37] K. Miura, Mild conversion of coal for producing valuable chemicals, Fuel Process. Technol. 62 (2-3) (2000) 119-135. [38] Z.Y. Liu, Advancement in coal chemistry: Structure and reactivity, Sci. Sin. Chim. 44 (9) (2014) 1431-1439. [39] C. He, X.J. Min, H.A. Zheng, Y.J. Fan, Q.X. Yao, D. zhang, X. Tang, C. Wan, M. Sun, X.X. Ma, C.Q. Jia, Study on the volatiles and kinetic of in situ catalytic pyrolysis of swelling low-rank coal, Energy Fuels 31 (12) (2017) 13558-13571. [40] D.K. Hong, L. Liu, S. Zhang, X. Guo, Effect of cooling rate on the reaction of volatiles from low-rank coal pyrolysis: Molecular dynamics simulations using ReaxFF, Fuel Process. Technol. 178 (2018) 133-138. |