Chinese Journal of Chemical Engineering ›› 2024, Vol. 76 ›› Issue (12): 10-20.DOI: 10.1016/j.cjche.2024.07.016
Previous Articles Next Articles
Xinyu Chen1, Shengran Zhou1, Lanyi Wang1, Chunlei Zhang2, Siyu Gao1, Di Yu2, Ying Cheng3, Xiaoqiang Fan1, Xuehua Yu1, Zhen Zhao1,2
Received:
2024-07-01
Revised:
2024-07-19
Accepted:
2024-07-23
Online:
2024-08-28
Published:
2024-12-28
Contact:
Xuehua Yu,E-mail:yuxuehua1986@163.com;Zhen Zhao,E-mail:zhenzhao@cup.edu.cn
Supported by:
Xinyu Chen1, Shengran Zhou1, Lanyi Wang1, Chunlei Zhang2, Siyu Gao1, Di Yu2, Ying Cheng3, Xiaoqiang Fan1, Xuehua Yu1, Zhen Zhao1,2
通讯作者:
Xuehua Yu,E-mail:yuxuehua1986@163.com;Zhen Zhao,E-mail:zhenzhao@cup.edu.cn
基金资助:
Xinyu Chen, Shengran Zhou, Lanyi Wang, Chunlei Zhang, Siyu Gao, Di Yu, Ying Cheng, Xiaoqiang Fan, Xuehua Yu, Zhen Zhao. Facile preparation of Fe-Beta zeolite-supported transition metal oxide catalysts and their catalytic performance for the simultaneous removal of NOx and soot[J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 10-20.
Xinyu Chen, Shengran Zhou, Lanyi Wang, Chunlei Zhang, Siyu Gao, Di Yu, Ying Cheng, Xiaoqiang Fan, Xuehua Yu, Zhen Zhao. Facile preparation of Fe-Beta zeolite-supported transition metal oxide catalysts and their catalytic performance for the simultaneous removal of NOx and soot[J]. 中国化学工程学报, 2024, 76(12): 10-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.07.016
[1] C. Paolucci, I. Khurana, A.A. Parekh, S. Li, A.J. Shih, H. Li, J.R. Di Iorio, J.D. Albarracin-Caballero, A. Yezerets, J.T. Miller, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, R. Gounder, Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction, Science 357 (6354) (2017) 898-903. [2] C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science 327 (5973) (2010) 1624-1627. [3] R. Abid, G. Delahay, H. Tounsi, Selective catalytic reduction of NO by NH3 on cerium modified faujasite zeolite prepared from aluminum scraps and industrial metasilicate, J. Rare Earths 38 (3) (2020) 250-256. [4] L.P. Han, S.X. Cai, M. Gao, J.Y. Hasegawa, P.L. Wang, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects, Chem. Rev. 119 (19) (2019) 10916-10976. [5] B. Choi, K.S. Lee, LNT/CDPF catalysts for simultaneous removal of NOx and PM from diesel vehicle exhaust, Chem. Eng. J. 240 (2014) 476-486. [6] R. Niessner, The many faces of soot: characterization of soot nanoparticles produced by engines, Angew Chem Int Ed 53 (46) (2014) 12366-12379. [7] J. Yang, Z. Li, J. Cui, Y. Ma, Y. Li, Q. Zhang, K. Song, C. Yang, Fabrication of wide temperature lanthanum and cerium doped Cu/TNU-9 catalyst with excellent NH3-SCR performance and outstanding SO2 + H2O tolerance, J. Rare Earths 41 (2023) 1195-1202. [8] S. Bensaid, V. Balakotaiah, D. Luss, Simulation of NOx and soot abatement with Cu-Cha and Fe-ZSM5 catalysts, AlChE. J. 63 (1) (2017) 238-248. [9] Y. Teraoka, K. Nakano, S. Kagawa, W.F. Shangguan, Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B Environ. 5 (3) (1995) L181-L185. [10] Y. Cheng, J. Liu, Z. Zhao, W.Y. Song, Y.C. Wei, Highly efficient and simultaneously catalytic removal of PM and NOx from diesel engines with 3DOM Ce0.8M0.1Zr0.1O2 (M=Mn, Co, Ni) catalysts, Chem. Eng. Sci. 167 (2017) 219-228. [11] Y. Cheng, J. Liu, Z. Zhao, W.Y. Song, Y.C. Wei, A new 3DOM Ce-Fe-Ti material for simultaneously catalytic removal of PM and NOx from diesel engines, J. Hazard. Mater. 342 (2018) 317-325. [12] Y. Cheng, W.Y. Song, J. Liu, H.L. Zheng, Z. Zhao, C.M. Xu, Y.C. Wei, E.J.M. Hensen, Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide, ACS Catal. 7 (6) (2017) 3883-3892. [13] L.H. Chen, M.H. Sun, Z. Wang, W.M. Yang, Z.K. Xie, B.L. Su, Hierarchically structured zeolites: from design to application, Chem. Rev. 120 (20) (2020) 11194-11294. [14] Z.D. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S.P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, T. Takewaki, T. Okubo, Widening synthesis bottlenecks: realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NOx removal, Angew. Chem. Int. Ed 54 (19) (2015) 5683-5687. [15] Y. Wu, J. Wang, Z.X. Chen, Y. Zhu, M.H. Yu, C. Wang, Y.P. Zhai, J.Q. Wang, G.R. Shen, M.Q. Shen, A novel material for passive NOx adsorber: Ce-based BEA zeolite, J. Rare Earths 41 (8) (2023) 1163-1170. [16] R.N. Xu, Z.Y. Wang, N. Liu, C.N. Dai, J. Zhang, B.H. Chen, Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction, ACS Catal. 10 (11) (2020) 6197-6212. [17] T. Wang, Z.T. Wan, X.C. Yang, X.Y. Zhang, X.X. Niu, B.M. Sun, Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction, Fuel Process. Technol. 169 (2018) 112-121. [18] X. Feng, Y. Cao, L. Lan, C.L. Lin, Y.S. Li, H.D. Xu, M.C. Gong, Y.Q. Chen, The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NOx by ammonia, Chem. Eng. J. 302 (2016) 697-706. [19] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3, J. Catal. 275 (2) (2010) 187-190. [20] Y. Ma, X.D. Wu, L.P. Liu, L. Cao, R. Ran, Z.C. Si, F. Gao, D. Weng, Critical roles of Cu(OH)2 in low-temperature moisture-induced degradation of Cu-SAPO-34 SCR catalyst: Correlating reversible and irreversible deactivation, Appl. Catal. B Environ. 278 (2020) 119306. [21] P. Sazama, B. Wichterlova, S. Sklenak, V.I. Parvulescu, N. Candu, G. Sadovska, J. Dedecek, P. Klein, V. Pashkova, P. Stastny, Acid and redox activity of template-free Al-rich H-BEA and Fe-BEA zeolites, J. Catal. 318 (2014) 22-33. [22] X. Guo, Z.Y. Ding, N. Kang, L. Yang, Y.J. Wang, C. Zhang, Z.Q. Li, T.T. Zhang, Y. Wang, Y. Wang, H. Qu, Ce enhanced low-temperature performance of Mn modified Cu-Beta zeolite catalyst for NH3-SCR, Fuel 361 (2024) 130694. [23] A.Y. Wang, Y.L. Wang, E.D. Walter, N.M. Washton, Y.L. Guo, G.Z. Lu, C.H.F. Peden, F. Gao, NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects, Catal. Today 320 (2019) 91-99. [24] J. Li, K. Fan, Y.L. Shan, S. Wang, J. Zhang, W.B. Fan, H. He, X.Y. Zhao, X.J. Meng, F.S. Xiao, Superior performance in passive NOx adsorption over an Al-rich Beta zeolite supported palladium, Appl. Catal. B Environ. 339 (2023) 123127. [25] X.F. Wang, Y. Xu, Z. Zhao, J.B. Liao, C. Chen, Q.B. Li, Recent progress of metal-exchanged zeolites for selective catalytic reduction of NOx with NH3 in diesel exhaust, Fuel 305 (2021) 121482. [26] D. Yu, C. Peng, Y. Ren, L.Y. Wang, C.L. Zhang, X.Q. Fan, X.H. Yu, Z. Zhao, Low temperature oxidation of diesel soot particles over one-dimensional 2×3 tunnel-structured Na2Mn5O10 catalysts, Appl. Catal. B Environ. Energy 344 (2024) 123614. [27] M. Saeidi, M. Hamidzadeh, Co-doping a metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) on Mn/ZSM-5 catalyst and its effect on the catalytic reduction of nitrogen oxides with ammonia, Res. Chem. Intermed. 43 (4) (2017) 2143-2157. [28] Y.H. Qiao, Z.Z. Guan, M.Y. Zhang, G. Chen, S.F. Zhou, H.L. Liu, J. Wu, R.T. Guo, W.G. Pan, F.Q. Li, P. He, Promoting effect of Cu and Mn doping on the Fe/ZSM-5 catalyst for selective catalytic reduction of NO with NH3, Fuel 357 (2024) 129947. [29] R. Tu, W. Lv, Y. Sun, Y.J. Wu, Y.W. Wu, X.D. Fan, E.C. Jiang, Q. Lu, X.W. Xu, Ru-RuO2-Nb2O5/Hβ zeolite catalyst for high-active hydrogenation of lignin derivatives at room temperature, Chem. Eng. J. 453 (2023) 139718. [30] A.M. Frey, S. Mert, J. Due-Hansen, R. Fehrmann, C.H. Christensen, Fe-BEA zeolite catalysts for NH3-SCR of NOx, Catal. Lett. 130 (1) (2009) 1-8. [31] G. Delahay, D. Valade, A. Guzman-Vargas, B. Coq, Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods, Appl. Catal. B Environ. 55 (2) (2005) 149-155. [32] Y. Xia, W.C. Zhan, Y. Guo, Y.L. Guo, G.Z. Lu, Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content, Chin. J. Catal. 37 (12) (2016) 2069-2078. [33] A. Bellmann, H. Atia, U. Bentrup, A. Bruckner, Mechanism of the selective reduction of NOx by methane over Co-ZSM-5, Appl. Catal. B Environ. 230 (2018) 184-193. [34] Kostyniuk, D. Key, M. Mdleleni, 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance, J. Energy Inst. 93 (2020) 552-564. [35] L.Y. Wang, Y. Ren, X.H. Yu, C. Peng, D. Yu, C.M. Zhong, J. Hou, C.Y. Yin, X.Q. Fan, Z. Zhao, J. Liu, Y.C. Wei, Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1-xOδ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NO X, J. Catal. 417 (2023) 226-247. [36] D. Yu, Y. Ren, X.H. Yu, X.Q. Fan, L.Y. Wang, R.D. Wang, Z. Zhao, K. Cheng, Y.S. Chen, Z. Sojka, A. Kotarba, Y.C. Wei, J. Liu, Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2, Appl. Catal. B Environ. 285 (2021) 119779. [37] Y.J. Wang, L.J. Xie, F.D. Liu, W.Q. Ruan, Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3, J. Environ. Sci. 81 (2019) 195-204. [38] X.Y. Wang, Y.M. Sun, F.Y. Han, Y.Q. Zhao, Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13, J. Environ. Chem. Eng. 10 (3) (2022) 107888. [39] H.W. Zhao, H.S. Li, X.H. Li, M.K. Liu, Y.D. Li, The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3, Catal. Today 297 (2017) 84-91. [40] N.D. Wasalathanthri, T.M. SantaMaria, D.A. Kriz, S.L. Dissanayake, C.H. Kuo, S. Biswas, S.L. Suib, Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation, Appl. Catal. B Environ. 201 (2017) 543-551. [41] N.Q. Zhang, L.C. Li, R. Wu, L.Y. Song, L.R. Zheng, G.Z. Zhang, H. He, Correction: Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: study of the CO-O2 competitive adsorption and active oxygen species, Catal. Sci. Technol. 10 (20) (2020) 7067. [42] Zhang, M. Li, X. Wang, L. Fan, Y. Dong, Y. Zhu, Excellent oxidation activity of toluene over core-shell structure Mn2O3@MnO2: role of surface lattice oxygen and Mn species, J. Chem. Technol. Biotechnol. 97 (2021) 1138-1148. [43] X.H. Feng, J.W. Xu, X.L. Xu, S.J. Zhang, J. Ma, X.Z. Fang, X. Wang, Unraveling the principles of lattice disorder degree of Bi2B2O7 (B = Sn, Ti, Zr) compounds on activating gas phase O2 for soot combustion, ACS Catal. 11 (19) (2021) 12112-12122. [44] L.J. He, Y. Zhang, Y.C. Zang, C.X. Liu, W.C. Wang, R. Han, N. Ji, S.T. Zhang, Q.L. Liu, Promotion of A-site Ag-doped perovskites for the catalytic oxidation of soot: synergistic catalytic effect of dual active sites, ACS Catal. 11 (22) (2021) 14224-14236. [45] T.T. Gu, Y. Liu, X.L. Weng, H.Q. Wang, Z.B. Wu, The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3, Catal. Commun. 12 (4) (2010) 310-313. [46] L. Rodriguez-Gonzalez, F. Hermes, M. Bertmer, E. Rodriguez-Castellon, A. Jimenez-Lopez, U. Simon, The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy, Appl. Catal. A Gen. 328 (2) (2007) 174-182. [47] Z. Chen, C. Fan, L. Pang, S.J. Ming, W. Guo, P. Liu, H.P. Chen, T. Li, One-pot synthesis of high performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18, Chem. Eng. J. 348 (2018) 608-617. [48] G. Li, B.D. Wang, H.Y. Wang, J. Ma, W.Q. Xu, Y.L. Li, Y.F. Han, Q. Sun, Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR, Catal. Commun. 108 (2018) 82-87. [49] S.Z. Xie, L.L. Li, L.J. Jin, Y.H. Wu, H. Liu, Q.J. Qin, X.L. Wei, J.X. Liu, L.H. Dong, B. Li, Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism, Appl. Surf. Sci. 515 (2020) 146014. [50] L.J. Jiang, Y. Liang, W.Z. Liu, H.L. Wu, T. Aldahri, D.S. Carrero, Q.C. Liu, Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NO X, J. Environ. Chem. Eng. 9 (6) (2021) 106360. [51] S. Liu, X.D. Wu, D. Weng, M. Li, R. Ran, Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot, ACS Catal. 5 (2) (2015) 909-919. [52] J.X. Liu, H.F. Cheng, H.L. Zheng, L. Zhang, B. Liu, W.Y. Song, J. Liu, W.S. Zhu, H.M. Li, Z. Zhao, Insight into the potassium poisoning effect for selective catalytic reduction of NOx with NH3 over Fe/beta, ACS Catal. 11 (24) (2021) 14727-14739. [53] L. Rui, T. Yue, Y. Zheng, G. Li, J. Gao, W. Zhang, J. Wang, M. Ma, W. Su, Mechanistic insights into the enhanced low-temperature activity of Cu-SSZ-13 by MnOx-CeO2 modification for standard SCR reaction and fast SCR reactions, Fuel 371 (2024) 131747. [54] G.L. Chen, X.L. Si, J.S. Yu, H.Y. Bai, X.H. Zhang, Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes, Appl. Surf. Sci. 330 (2015) 191-199. [55] A. Mekki, A. Mokhtar, M. Hachemaoui, M. Beldjilali, M.F. Meliani, H.H. Zahmani, S. Hacini, B. Boukoussa, Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants, Microporous Mesoporous Mater. 310 (2021) 110597. [56] Z.H. Wang, X. Xu, Y. Zhu, H. He, N.L. Wang, X.B. Yang, L.C. Liu, One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures, Microporous Mesoporous Mater. 333 (2022) 111720. [57] F.Y. Liu, H.P. Zhang, Y. Yan, T. Wang, Preparation and characterization of Cu and Mn modified beta zeolite membrane catalysts for toluene combustion, Mater. Chem. Phys. 241 (2020) 122322. [58] Fan, Z. Wu, Z. Li, Z. Qin, H. Zhu, M. Dong, J. Wang, W. Fan, Controllable preparation of ultrafine Co3O4 nanoparticles on H-ZSM-5 with superior catalytic performance in lean methane combustion, Fuel 334 (2023) 126815. [59] X.H. Yu, L.Y. Wang, M.Z. Chen, X.Q. Fan, Z. Zhao, K. Cheng, Y.S. Chen, Z. Sojka, Y.C. Wei, J. Liu, Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1-xOδ/SiO2 catalysts, Appl. Catal. B Environ. 254 (2019) 246-259. [60] T.X. Zhou, L. Liu, B.D. Wang, S.G. Ma, Z.D. Dai, W.J. Jiang, X. Jiang, Insights into the enhanced activity and SO2 resistance of air oxidation treated Mn-Fe doped biochar catalyst in the low-temperature catalytic reduction of NOx with NH3, Fuel 357 (2024) 129989. [61] Y.J. Pu, X.Y. Xie, W.J. Jiang, L. Yang, X. Jiang, L. Yao, Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: a review, Chin. Chem. Lett. 31 (10) (2020) 2549-2555. [62] Peng, Y. Ren, D. Yu, L. Wang, C. Zhang, X. Fan, X. Yu, Z. Zhao, Y. Wei, J. Liu, K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion, Nano Res. 16 (2023) 6187-6199. |
[1] | Tianxiao Huang, Binhang Yan. Evaluation and application of kinetic models for Cu-catalyzed acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 209-219. |
[2] | Bingning Wang, Xianzhe Wang, Song Yang, Chao Yang, Huiling Fan, Ju Shangguan. Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 203-216. |
[3] | Wei Guo, Yan Zhang, Xiaxin Lei, Shuang Wang. An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 1-8. |
[4] | Yaqi Qu, Xiang Li, Hualiang An, Xinqiang Zhao, Yanji Wang. Selective hydrogenation of dimethyl toluene-2,4-dicarbamate over supported Rh-based catalysts: Effect of support properties [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 102-109. |
[5] | Fangren Qian, Lishan Peng, Yujuan Zhuang, Lei Liu, Qingjun Chen. Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 140-146. |
[6] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[7] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[8] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[9] | Wangtao Li, Qiancheng Zheng, Huayu Zhang, Yunsheng Dai, Zhengbao Wang. Gold/Mg-Al mixed oxides catalysts for oxidative esterification of methacrolein: Effects of support size and composition on gold loading [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 128-138. |
[10] | Gaoyan Shao, Jianjie Chen, Yuming Tu, Feng Liu, Zhiyong Zhou, Shichao Tian, Zhongqi Ren. Preparation of sodium alginate gel microspheres catalysts and its high catalytic performance for treatment of ciprofloxacin wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 158-170. |
[11] | Juan Xu, Ping Zhu, Islam H. El Azab, Ben Bin Xu, Zhanhu Guo, Ashraf Y. Elnaggar, Gaber A.M. Mersal, Xiangyi Liu, Yunfei Zhi, Zhiping Lin, Hassan Algadi, Shaoyun Shan. An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 187-197. |
[12] | Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 44-60. |
[13] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 76-90. |
[14] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 203-210. |
[15] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||