Chinese Journal of Chemical Engineering ›› 2024, Vol. 76 ›› Issue (12): 135-146.DOI: 10.1016/j.cjche.2024.08.012
Previous Articles Next Articles
Rongqi Chen, Yongzheng Zhang, Yanli Wang, Chunyin Shen, Liang Zhan, Licheng Ling
Received:
2024-06-12
Revised:
2024-08-03
Accepted:
2024-08-28
Online:
2024-10-16
Published:
2024-12-28
Contact:
Yongzheng Zhang,E-mail:zhangyongzheng@ecust.edu.cn;Yanli Wang,E-mail:ylwang@ecust.edu.cn;Liang Zhan,E-mail:zhanliang@ecust.edu.cn
Supported by:
Rongqi Chen, Yongzheng Zhang, Yanli Wang, Chunyin Shen, Liang Zhan, Licheng Ling
通讯作者:
Yongzheng Zhang,E-mail:zhangyongzheng@ecust.edu.cn;Yanli Wang,E-mail:ylwang@ecust.edu.cn;Liang Zhan,E-mail:zhanliang@ecust.edu.cn
基金资助:
Rongqi Chen, Yongzheng Zhang, Yanli Wang, Chunyin Shen, Liang Zhan, Licheng Ling. Effect of introducing oxygen into ethylene tar pitches on their carbonaceous products[J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 135-146.
Rongqi Chen, Yongzheng Zhang, Yanli Wang, Chunyin Shen, Liang Zhan, Licheng Ling. Effect of introducing oxygen into ethylene tar pitches on their carbonaceous products[J]. 中国化学工程学报, 2024, 76(12): 135-146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.08.012
[1] Z.F. Li, Y.C. Chen, Z.L. Jian, H. Jiang, J.J. Razink, W.F. Stickle, J.C. Neuefeind, X.L. Ji, Defective hard carbon anode for Na-ion batteries, Chem. Mater. 30 (14) (2018) 4536-4542. [2] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors, J. Power Sources 195 (21) (2010) 7452-7456. [3] Z.H. Guo, C.Y. Wang, M.M. Chen, M.W. Li, Hard carbon derived from coal tar pitch for use as the anode material in lithium ion batteries, Int. J. Electrochem. Sci. 8 (2) (2013) 2702-2709. [4] E. Irisarri, A. Ponrouch, M.R. Palacin, Review-hard carbon negative electrode materials for sodium-ion batteries, J. Electrochem. Soc. 162 (14) (2015) A2476-A2482. [5] D.Q. Chen, W. Zhang, K.Y. Luo, Y. Song, Y.J. Zhong, Y.X. Liu, G.K. Wang, B.H. Zhong, Z.G. Wu, X.D. Guo, Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization, Energy Environ. Sci. 14 (4) (2021) 2244-2262. [6] Y. Morikawa, S.I. Nishimura, R.I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis, Adv. Energy Mater. 10 (3) (2020) 1903176. [7] C.Z. Ge, Z.H. Fan, J. Zhang, Y.M. Qiao, J.M. Wang, L.C. Ling, Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method as high-performance anodes for lithium-ion batteries, RSC Adv. 8 (60) (2018) 34682-34689. [8] T. Zheng, J.S. Xue, J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials, Chem. Mater. 8 (2) (1996) 389-393. [9] L.F. Zhao, Z. Hu, W.H. Lai, Y. Tao, J. Peng, Z.C. Miao, Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts, Adv. Energy Mater. 11 (1) (2021) 2002704. [10] Y.Y. Yu, Q. Wei, F. Wang, S.H. Jiao, Z.P. Qiu, L.L. Wang, H. Liu, K. Chen, A.J. Guo, Carbonization characteristics of ethylene tar narrow fractions, J. Fuel Chem. Technol. 50 (3) (2022) 376-384. [11] Y.Y. Yu, F. Wang, B. Wiafe Biney, K.Q. Li, S.H. Jiao, K. Chen, H. Liu, A.J. Guo, Co-carbonization of ethylene tar and fluid catalytic cracking decant oil: development of high-quality needle coke feedstock, Fuel 322 (2022) 124170. [12] C.Z. Ge, Z.L. Sun, H.X. Yang, D.H. Long, W.M. Qiao, L.C. Ling, Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method, N. Carbon Mater. 33 (1) (2018) 71-81. [13] C.Z. Ge, H.X. Yang, J.T. Wang, W.M. Qiao, D.H. Long, L.C. Ling, Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process, RSC Adv. 6 (1) (2016) 796-804. [14] K. Shi, J.X. Yang, C. Ye, H.B. Liu, X.K. Li, A comparison of ethylene-tar-derived isotropic pitches prepared by air blowing and nitrogen distillation methods and their carbon fibers, Materials 12 (2) (2019) 305. [15] M.B. Wu, Y.Y. Shi, S.B. Li, N. Guo, Y.W. Wang, J.T. Zheng, J.S. Qiu, Synthesis and characterization of condensed poly-nuclear aromatic resin using heavy distillate from ethylene tar, N. Carbon Mater. 27 (6) (2012) 469-475. [16] J.C. Liu, X.J. Chen, Q. Xie, D.C. Liang, Controllable synthesis of isotropic pitch precursor for general purpose carbon fiber using waste ethylene tar via bromination-dehydrobromination, J. Clean. Prod. 271 (2020) 122498. [17] R. Menendez, M. Granda, J.J. Fernandez, A. Figueiras, J. Bermejo, J. Bonhomme, J. Belzunce, Influence of pitch air-blowing and thermal treatment on the microstructure and mechanical properties of carbon/carbon composites, J. Microsc. 185 (2) (1997) 145-156. [18] C. Blanco, R. Santamaria, J. Bermejo, R. Menendez, A comparative study of air-blown and thermally treated coal-tar pitches, Carbon 38 (4) (2000) 517-523. [19] S. Otani, Mechanism of the carbonization of MP carbon fiber at the low temperature range, Carbon 5 (3) (1967) 219-225. [20] S.M. Zeng, T. Maeda, K. Tokumitsu, J. Mondori, I. Mochida, Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-II. air blowing of coal tar, hydrogenated coal tar, and petroleum pitches, Carbon 31 (3) (1993) 413-419. [21] T. Maeda, S.M. Zeng, K. Tokumitsu, J. Mondori, I. Mochida, Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-I. preparation of spinnable isotropic pitch precursor from coal tar by air blowing, Carbon 31 (3) (1993) 407-412. [22] J.B. Barr, I.C. Lewis, Chemical changes during the mild air oxidation of pitch, Carbon 16 (6) (1978) 439-444. [23] H. Niu, P.P. Zuo, W.Z. Shen, S.J. Qu, A comprehensive investigation on the chemical structure character of spinnable pitch for improving and optimizing the oxidative stabilization of coal tar pitch-based fiber, Polymer 224 (2021) 123737. [24] B.J. Yu, C.Y. Wang, M.M. Chen, J.M. Zheng, J. Qi, Two-step chemical conversion of coal tar pitch to isotropic spinnable pitch, Fuel Process. Technol. 104 (2012) 155-159. [25] I.C. Lewis, Thermal polymerization of aromatic hydrocarbons, Carbon 18 (3) (1980) 191-196. [26] M. S. Hosseini, P. Chartrand, Critical assessment of thermodynamic properties of important polycyclic aromatic hydrocarbon compounds (PAHs) in coal tar pitch at typical temperature ranges of the carbonization process, Calphad 74 (2021) 102278. [27] J. Wang, L. Yan, B.H. Liu, Q.J. Ren, L.L. Fan, Z.Q. Shi, Q.Y. Zhang, A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage, Chin. Chem. Lett. 34 (4) (2023) 107526. [28] D. Liu, B. Lou, G.K. Chang, Y.D. Zhang, R. Yu, Z.H. Li, C.C. Wu, M. Li, Q.T. Chen, Study on effect of cross-linked structures induced by oxidative treatment of aromatic hydrocarbon oil on subsequent carbonized behaviors, Fuel 231 (2018) 495-506. [29] R. Xu, Z.L. Yi, M.X. Song, J.P. Chen, X.X. Wei, F.Y. Su, L.Q. Dai, G.H. Sun, F. Yang, L.J. Xie, C.M. Chen, Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor, Carbon 206 (2023) 94-104. [30] Y.X. Lu, C.L. Zhao, X.G. Qi, Y.R. Qi, H. Li, X.J. Huang, L.Q. Chen, Y.S. Hu, Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance, Adv. Energy Mater. 8 (27) (2018) 1800108. [31] L.C. Ji, Y. Zhao, L.J. Cao, Y. Li, C.L. Ma, X.G. Qi, Z.P. Shao, A fundamental understanding of structure evolution in the synthesis of hard carbon from coal tar pitch for high-performance sodium storage, J. Mater. Chem. A 11 (48) (2023) 26727-26741. [32] I. Mochida, C.H. Ku, Y. Korai, Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches, Carbon 39 (3) (2001) 399-410. [33] P.Y. Zhao, J.J. Tang, C.Y. Wang, A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization, J. Solid State Electrochem. 21 (2) (2017) 555-562. [34] R.Q. Chen, Y.C. Guo, Y.Z. Zhang, C.Y. Shen, Y.L. Wang, L. Zhan, Reaction mechanism of ethylene tar in the air atmosphere, Fuel 353 (2023) 129146. [35] T.R. Guo, R.Q. Chen, W. Gao, Y.L. Wang, L. Zhan, The oxidation reaction mechanism and its kinetics for a carbonaceous precursor prepared from ethylene tar for use as an anode material for lithium-ion batteries, N. Carbon Mater. 39 (2) (2024) 354-366. [36] W.J. Zhang, T.H. Li, M. Lu, C.L. Hou, A comparative study of the characteristics and carbonization behaviors of three modified coal tar pitches, N. Carbon Mater. 28 (2) (2013) 140-144. [37] Y.S. Peng, J.X. Yang, K. Shi, J.G. Guo, H. Zhu, X.K. Li, Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors, N. Carbon Mater. 35 (6) (2020) 722-730. [38] H.Y. Guo, Y.Y. Li, C.L. Wang, L. He, C. Li, Y.Q. Guo, Y. Zhou, Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons, N. Carbon Mater. 36 (6) (2021) 1073-1078. [39] H.A. Akrami, M.F. Yardim, A. Akar, E. Ekinci, FT-i.r. characterization of pitches derived from Avgamasya asphaltite and Raman-Dincer heavy crude, Fuel 76 (14-15) (1997) 1389-1394. [40] B. Muik, B. Lendl, A. Molina-Diaz, M.J. Ayora-Canada, Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy, Chem. Phys. Lipids 134 (2) (2005) 173-182. [41] J.J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, R. Menendez, Modification of coal-tar pitch by air-blowing-I. variation of pitch composition and properties, Carbon 33 (3) (1995) 295-307. [42] K. Yanagisawa, T. Suzuki, Carbonization of oxidized mesophase pitches originating from petroleum and coal tar, Fuel 72 (1) (1993) 25-30. [43] J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation, Fuel 80 (1) (2001) 41-48. [44] B.H. Kim, J.H. Kim, J.G. Kim, M.J. Bae, J.S. Im, C.W. Lee, S. Kim, Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue, J. Ind. Eng. Chem. 41 (2016) 1-9. [45] S. Yoon, H. Kim, S.M. Oh, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, J. Power Sources 94 (1) (2001) 68-73. [46] S. Ko, J.E. Choi, C.W. Lee, Y.P. Jeon, Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber, J. Ind. Eng. Chem. 54 (2017) 252-261. [47] B. Petrova, T. Budinova, N. Petrov, M.F. Yardim, E. Ekinci, M. Razvigorova, Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch, Carbon 43 (2) (2005) 261-267. [48] G.M. Yuan, X.K. Li, X.Q. Xiong, Z.J. Dong, A. Westwood, B.L. Li, C. Ye, G.Z. Ma, Z.W. Cui, Y. Cong, J. Zhang, Y.J. Li, A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen, Carbon 115 (2017) 59-76. [49] F. Fanjul, M. Granda, R. Santamaria, R. Menendez, On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase, Fuel 81 (16) (2002) 2061-2070. [50] H. Ghaedi, M. Ayoub, S. Sufian, B. Lal, Y. Uemura, Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors, J. Mol. Liq. 242 (2017) 395-403. [51] T. Kondratenko, O. Ovchinnikov, I. Grevtseva, M. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E. Tatianina, Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces, Materials 13 (4) (2020) 909. [52] G.M.S. El-Bahy, FTIR and Raman spectroscopic study of Fenugreek (Trigonella foenum graecum L.) seeds, J. Appl. Spectrosc. 72 (1) (2005) 111-116. [53] M.D. Guillen, C. Diaz, C.G. Blanco, Characterization of coal tar pitches with different softening points by 1 H NMR Role of the different kinds of protons in the thermal process, Fuel Process. Technol. 58 (1) (1998) 1-15. [54] C. Diaz, C.G. Blanco, NMR: a powerful tool in the characterization of coal tar pitch, Energy Fuels 17 (4) (2003) 907-913. [55] S.J. Lee, M. Nishizawa, I. Uchida, Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction, Electrochim. Acta 44 (14) (1999) 2379-2383. [56] L.B. Ebert, J.C. Scanlon, D.R. Mills, X-ray diffraction of n-paraffins and stacked aromatic molecules: insights into the structure of petroleum asphaltenes, Liq. Fuel. Technol. 2 (3) (1984) 257-286. [57] H.L. Zhang, S.H. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Electrochemical performance of pyrolytic carbon-coated natural graphite spheres, Carbon 44 (11) (2006) 2212-2218. [58] B.H. Kim, J.H. Kim, J.G. Kim, J.S. Im, C.W. Lee, S. Kim, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem. 45 (2017) 99-104. [59] N. Shimodaira, M.S. A, Raman spectroscopic investigations of activated carbon materials, 92 (2) (2002) 902-909. [60] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, J.H. Potgieter, Raman spectroscopy for the analysis of coal: a review, J. Raman Spectrosc. 42 (2) (2011) 123-129. [61] C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel 86 (15) (2007) 2316-2324. [62] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon 43 (8) (2005) 1731-1742. [63] Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater. 2 (5) (1990) 557-563. [64] J. Xu, H. Tang, S. Su, J.W. Liu, K. Xu, K. Qian, Y. Wang, Y.B. Zhou, S. Hu, A.C. Zhang, J. Xiang, A study of the relationships between coal structures and combustion characteristics: the insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals, Appl. Energy 212 (2018) 46-56. [65] O. Beyssac, B. Goffe, J.P. Petitet, E. Froigneux, M. Moreau, J.N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc. 59 (10) (2003) 2267-2276. [66] Y.A. Abdu, Raman micro-spectroscopy of nanodiamonds from the Kapoeta meteorite, Diam. Relat. Mater. 118 (2021) 108536. [67] T. Lopez-Rios, E. Sandre, S. Leclercq, E. Sauvain, Polyacetylene in diamond films evidenced by surface enhanced Raman scattering, Phys. Rev. Lett. 76 (26) (1996) 4935-4938. [68] A. C. Ferrari, J. Robertson, Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 (12) (2001) 121405. [69] X.J. Li, J.I. Hayashi, C.Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel 85 (12-13) (2006) 1700-1707. [70] J. Xu, X.R. Xiang, K. Xu, L.M. He, H.D. Han, S. Su, Y. Wang, S. Hu, J. Xiang, Developing micro-Raman spectroscopy for char structure characterization in the scale of micro- and bulk: a case study of Zhundong coal pyrolysis, Fuel 291 (2021) 120168. [71] M. Shi, Y.Z. Chen, H. Wen, Y.N. Liu, One-step heat treatment to process semi-coke powders as an anode material with superior rate performance for Li-ion batteries, RSC Adv. 8 (72) (2018) 41207-41217. [72] I.C. Lewis, Chemistry of pitch carbonization, Fuel 66 (11) (1987) 1527-1531. [73] L. Bokobza, J.L. Bruneel, M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett. 590 (2013) 153-159. [74] B. Lou, D. Liu, Y.J. Duan, X.L. Hou, Y.D. Zhang, Z.H. Li, Z.W. Wang, M. Li, Structural modification of petroleum pitch induced by oxidation treatment and its relevance to carbonization behaviors, Energy Fuels 31 (9) (2017) 9052-9066. [75] E.R. Vorpagel, J.G. Lavin, Most stable configurations of polynuclear aromatic hydrocarbon molecules in pitches via molecular modelling, Carbon 30 (7) (1992) 1033-1040. [76] I. Mochida, S.H. Yoon, Y. Korai, Mesoscopic structure and properties of liquid crystalline mesophase pitch and its transformation into carbon fiber, Chem. Rec. 2 (2) (2002) 81-101. [77] P.C. Chen, S. Fatayer, B. Schuler, J.N. Metz, L. Gross, N. Yao, Y.L. Zhang, The role of methyl groups in the early stage of thermal polymerization of polycyclic aromatic hydrocarbons revealed by molecular imaging, Energy Fuels 35 (3) (2021) 2224-2233. [78] L. Zhang, C.J. Liu, Y. Jia, Y.D. Mu, Y. Yan, P.C. Huang, Pyrolytic modification of heavy coal tar by multi-polymer blending: preparation of ordered carbonaceous mesophase, Polymers 16 (1) (2024) 161. [79] A. Jana, L.T. Kearney, A.K. Naskar, J.C. Grossman, N. Ferralis, Effect of methyl groups on formation of ordered or layered graphitic materials from aromatic molecules, Small 19 (43) (2023) e2302985. [80] A. Annamraju, G.S. Jung, S. Bhagia, J.T. Damron, M.R. Ryder, M.A. Arnould, E. Cakmak, F. Vautard, R.M. Paul, S. Irle, N.C. Gallego, E.L. Curzio, On the role of methyl groups in the molecular architectures of mesophase pitches, Fuel 357 (2024) 129976. [81] R. E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons, Proc. Roy. Soc. Lond. A 209 (1097) (1951) 196-218. |
[1] | Xinglong Xiong, Baozhong Ma, Xiang Li, Jiancheng Yu, Longfei Shi, Chengyan Wang, Yongqiang Chen. Hydrometallurgical process and recovery of valuable elements for limonitic laterite: A review [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 189-201. |
[2] | Jianzhi Wang, Xugen Li, Cheng Zhang, Yuan Pu, Jiawu Liu, Jie Liu, Yanping Liu, Xiao Lin, Faquan Yu. Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 212-221. |
[3] | Zongyu Yao, Qingchao Jiang, Xingsheng Gu. Distributed process monitoring based on Kantorovich distance-multiblock variational autoencoder and Bayesian inference [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 311-323. |
[4] | Xin Li, Yue Ma, Xuning Wang, Jianguo Wu, Dong Cao, Daojian Cheng. Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 60-68. |
[5] | Xueqing Ren, Jiahao Niu, Yan Li, Lei Li, Chao Zhang, Qiang Guo, Qiaoling Zhang, Weizhou Jiao. Photocatalytic ozonation-based degradation of phenol by ZnO-TiO2 nanocomposites in spinning disk reactor [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 74-84. |
[6] | Hai Cao, Haibin Yang, Yanxiong Fang, Yuandi Zeng, Xiaolan Cai, Jingjing Ma. Study on trifluoromethanesulfonic acid-promoted synthesis of daidzein: Process optimization and reaction mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 132-139. |
[7] | Baichuan Xu, Bin Wang, Tao Li. Four-channel catalytic micro-reactor based on alumina hollow fiber membrane for efficient catalytic oxidation of CO [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 140-147. |
[8] | Jiaojiao Luo, Zhehao Jin, Heping Jin, Qian Li, Xu Ji, Yiyang Dai. Causal temporal graph attention network for fault diagnosis of chemical processes [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 20-32. |
[9] | Zhekun Chen, Weitong Pan, Longfei Tang, Xueli Chen, Fuchen Wang. Effect of carbon material and surfactant on ink property and resulting surface cracks of fuel-cell microporous layers [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 1-12. |
[10] | Xiaona Liu, Baohua Zhao, Yanyun Hu, Luyue Huang, Jingxiang Ma, Shuqiao Xu, Zhonglin Xia, Xiaoying Ma, Shuangchen Ma. Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 23-33. |
[11] | Guodong Xia, Xiaoya Zhang, Dandan Ma. Effects of baffle position in serpentine flow channel on the performance of proton exchange membrane fuel cells [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 250-262. |
[12] | Qing Liu, Tinghao Jia, Lun Pan, Jijun Zou, Xiangwen Zhang. Relationship between hydrogenation degree and pyrolysis performance of jet fuel [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 35-42. |
[13] | Jinxiu Hu, Xianlong Liu, Yi Liu, Kang Xue, Chengxiang Shi, Xiangwen Zhang, Li Wang, Ji-Jun Zou, Lun Pan. Photoinduced transposed Paternò-Büchi reaction for effective synthesis of high-performance jet fuel [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 39-48. |
[14] | Rui Yu, Zhensheng Shen, Yanan Liu, Chengxiang Shi, Juncong Qu, Lun Pan, Zhenfeng Huang, Xiangwen Zhang, Ji-Jun Zou. Tandem hydroalkylation and deoxygenation of lignin-derived phenolics to synthesize high-density fuels [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 104-109. |
[15] | Amonrat Thangthong, Wuttichai Roschat, Phongsakorn Pholsupho, Aekkaphon Thammayod, Sunti Phewphong, Tappagorn Leelatam, Preecha Moonsin, Boonyawan Yoosuk, Pathompong Janetaisong, Vinich Promarak. Physicochemical properties of lard oil and rubber seed oil blends and their comprehensive characterization [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||