[1] H. Ishaq, C. Crawford, CO2-based alternative fuel production to support development of CO2 capture, utilization and storage, Fuel 331 (2023) 125684. [2] S.P. Kaldis, G.T. Pantoleontos, D.E. Koutsonikolas, Membrane technology in IGCC processes for precombustion CO2 capture. Current Trends and Future Developments on (Bio-) Membranes. Elsevier, (2018), pp 29-357. [3] P.H.M. Feron, A. Cousins, K.Q. Jiang, R.R. Zhai, M. Garcia, An update of the benchmark post-combustion CO2-capture technology, Fuel 273 (2020) 117776. [4] M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: a review, Energy 46 (1) (2012) 431-441. [5] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology: the U.S. department of energy’s carbon sequestration program, Int. J. Greenh. Gas Contr. 2 (1) (2008) 9-20. [6] J. Zhang, P.A. Webley, P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Convers. Manag. 49 (2) (2008) 346-356. [7] E.S. Sanz-Perez, L. Rodriguez-Jardon, A. Arencibia, R. Sanz, M. Iglesias, E.M. Maya, Bromine pre-functionalized porous polyphenylenes: new platforms for one-step grafting and applications in reversible CO2 capture, J. CO2 Util. 30 (2019) 183-192. [8] T. Ghanbari, F. Abnisa, W.M.A. Wan Daud, A review on production of metal organic frameworks (MOF) for CO2 adsorption, Sci. Total Environ. 707 (2020) 135090. [9] L.C. Tome, I.M. Marrucho, Ionic liquid-based materials: a platform to design engineered CO2 separation membranes, Chem. Soc. Rev. 45 (10) (2016) 2785-2824. [10] C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci. 279 (1-2) (2006) 1-49. [11] Z.H. Liang, W. Rongwong, H.L. Liu, K.Y. Fu, H.X. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H.C. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P.P. Tontiwachwuthikul, Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents, Int. J. Greenh. Gas Contr. 40 (2015) 26-54. [12] K.M.S. Salvinder, H. Zabiri, S.A. Taqvi, M. Ramasamy, F. Isa, N.E.M. Rozali, H. Suleman, A. Maulud, A.M. Shariff, An overview on control strategies for CO2 capture using absorption/stripping system, Chem. Eng. Res. Des. 147 (2019) 319-337. [13] A.B. Bindwal, P.D. Vaidya, E.Y. Kenig, Kinetics of carbon dioxide removal by aqueous diamines, Chem. Eng. J. 169 (1-3) (2011) 144-150. [14] I.O. Furtado, T.C. dos Santos, L.F. Vasconcelos, L.T. Costa, R.G. Fiorot, C.M. Ronconi, J.W. de M. Carneiro, Combined theoretical and experimental studies on CO2 capture by amine-activated glycerol, Chem. Eng. J. 408 (2021) 128002. [15] W.D. Zhang, X.H. Jin, W.W. Tu, Q. Ma, M.L. Mao, C.H. Cui, A novel CO2 phase change absorbent: MEA/1-propanol/H2O, Energy Fuels 31 (4) (2017) 4273-4279. [16] S.M. Soltani, P.S. Fennell, N. Mac Dowell, A parametric study of CO2 capture from gas-fired power plants using monoethanolamine (MEA), Int. J. Greenh. Gas Contr. 63 (2017) 321-328. [17] K. Leontiadis, E. Tzimpilis, D. Aslanidou, I. Tsivintzelis, Solubility of CO2 in 3-amino-1-propanol and in N-methyldiethanolamine aqueous solutions: experimental investigation and correlation using the CPA equation of state, Fluid Phase Equilib. 500 (2019) 112254. [18] A.L. Kohl, R. Nielsen, Gas purification, Elsevier, Amsterdam, 1997. [19] N. El Hadri, D.V. Quang, E.L.V. Goetheer, M.R.M. Abu Zahra, Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy 185 (2017) 1433-1449. [20] P. DANCKWIRTS, The absorption of carbon dioxide into aqueous amine solutions and effects of catalysis, Trans. Inst. Chem. Engrs, 45 (1967) T32-T49. [21] X.L. Li, X.B. Zhou, J.W. Wei, Y.M. Fan, L. Liao, H.Q. Wang, Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent, Sep. Purif. Technol. 265 (2021) 118481. [22] X.S. Li, J. Liu, W.F. Jiang, G. Gao, F. Wu, C. Luo, L.Q. Zhang, Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O, Sep. Purif. Technol. 275 (2021) 119181. [23] S.H. Zhang, Y. Shen, P.J. Shao, J.M. Chen, L.D. Wang, Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas, Environ. Sci. Technol. 52 (6) (2018) 3660-3668. [24] D.D.D. Pinto, H. Knuutila, G. Fytianos, G. Haugen, T. Mejdell, H.F. Svendsen, CO2 post combustion capture with a phase change solvent. Pilot plant campaign, Int. J. Greenh. Gas Contr. 31 (2014) 153-164. [25] Z.C. Xu, S.J. Wang, C.H. Chen, CO2 absorption by biphasic solvents: mixtures of 1, 4-butanediamine and 2-(diethylamino)-ethanol, Int. J. Greenh. Gas Contr. 16 (2013) 107-115. [26] Q. Ye, X.L. Wang, Y.Q. Lu, Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture, Int. J. Greenh. Gas Contr. 39 (2015) 205-214. [27] F. Liu, M.X. Fang, W.F. Dong, T. Wang, Z.X. Xia, Q.H. Wang, Z.Y. Luo, Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation, Appl. Energy 233 (2019) 468-477. [28] F. Liu, M.X. Fang, N.T. Yi, T. Wang, Q.H. Wang, Biphasic behaviors and regeneration energy of a 2-(diethylamino)-ethanol and 2-((2-aminoethyl)amino) ethanol blend for CO2 capture, Sustain. Energy Fuels 3 (12) (2019) 3594-3602. [29] L.D. Wang, S.L. An, Q.W. Li, S.H. Yu, S.Y. Wu, Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column, Chem. Eng. J. 314 (2017) 681-687. [30] M. Xu, S. Wang, L. Xu, Screening of physical-chemical biphasic solvents for CO2 absorption, Int J Green Gas Conl, 85 (2019) 199-205. [31] W.L. Luo, D.F. Guo, J.H. Zheng, S.W. Gao, J. Chen, CO2 absorption using biphasic solvent: Blends of diethylenetriamine, sulfolane, and water, Int. J. Greenh. Gas Contr. 53 (2016) 141-148. [32] F. Barzagli, F. Mani, M. Peruzzini, Novel water-free biphasic absorbents for efficient CO2 capture, Int. J. Greenh. Gas Contr. 60 (2017) 100-109. [33] D.D.D. Pinto, S.A.H. Zaidy, A. Hartono, H.F. Svendsen, Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests, Int. J. Greenh. Gas Contr. 28 (2014) 318-327. [34] A.F. Ciftja, A. Hartono, H.F. Svendsen, Experimental study on phase change solvents in CO2 capture by NMR spectroscopy, Chem. Eng. Sci. 102 (2013) 378-386. [35] C. Guo, S.Y. Chen, Y.C. Zhang, A 13C NMR study of carbon dioxide absorption and desorption in pure and blended 2-(2-aminoethylamine)ethanol (AEEA) and 2-amino-2-methyl-1-propanol (AMP) solutions, Int. J. Greenh. Gas Contr. 28 (2014) 88-95. [36] J.J. Liu, D. Yang, M. Yang, Z.S. Nie, D. Wang, Research on the main control factors of gas desorption in middle and low rank coals based on orthogonal testing, Fuel 357 (2024) 129862. [37] M. Henze, M.C. van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological wastewater treatment, IWA publishing, Nanjing, 2008. [38] D. Baetens, P.A. Vanrolleghem, M.C.M. van Loosdrecht, L.H. Hosten, Temperature effects in bio-P removal, Water Sci. Technol. 39 (1) (1999) 215-225. [39] H. Kim, S.J. Hwang, K.S. Lee, Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process, Environ. Sci. Technol. 49 (3) (2015) 1478-1485. [40] J.M. Smith, Introduction to chemical engineering thermodynamics, J. Chem. Educ. 27 (10) (1950) 584. [41] L. Phan, J.R. Andreatta, L.K. Horvey, C.F. Edie, A.L. Luco, A. Mirchandani, D.J. Darensbourg, P.G. Jessop, Switchable-polarity solvents prepared with a single liquid component, J. Org. Chem. 73 (1) (2008) 127-132. [42] P.G. Jessop, D.J. Heldebrant, X.W. Li, C.A. Eckert, C.L. Liotta, Green chemistry: reversible nonpolar-to-polar solvent, Nature 436 (7054) (2005) 1102. [43] S. Zhang, Z.F. Zhao, C.C. Yu, Z. Geng, Z.H. Yang, S.X. Wang, Orthogonal experimental study on the cold-start control strategies of a SI aviation piston engine fueled with kerosene, Fuel 328 (2022) 124880. [44] W.B. Zhao, Q. Zhao, Z. Zhang, J.J. Liu, R. Chen, Y. Chen, J. Chen, Liquid-solid phase-change absorption of acidic gas by polyamine in nonaqueous organic solvent, Fuel 209 (2017) 69-75. [45] B. Yu, H. Yu, K.K. Li, Q. Yang, R. Zhang, L.C. Li, Z.L. Chen, Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution, Appl. Energy 208 (2017) 1308-1317. [46] X.Y. Luo, X. Fan, G.L. Shi, H.R. Li, C.M. Wang, Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond, J. Phys. Chem. B 120 (10) (2016) 2807-2813. [47] P.V. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34 (4) (1979) 443-446. [48] D. Wei, J.L. Xiang, Q.L. Luo, Y. Mao, X. Luo, Y.Q. Huang, Z.W. Liang, Kinetic study on CO2 absorption by aqueous secondary amine + tertiary amine blends: Kinetic model and effect of the chain length of tertiary amine, Chem. Eng. Sci. 292 (2024) 119996. [49] Q.L. Luo, Q. Sun, Q. Liu, S. Liu, M. Xiao, M.J. Chen, Y.Y. Li, H.X. Gao, Z.W. Liang, Kinetics of CO2 absorption into ethanolamine + water + ethanol system: mechanism, role of water, and kinetic model, Chem. Eng. Sci. 259 (2022) 117732. [50] X. Zhang, K.Y. Fu, Z.W. Liang, W. Rongwong, Z. Yang, R. Idem, P. Tontiwachwuthikul, Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing, Fuel 136 (2014) 261-267. [51] D. Wei, Q.L. Luo, T. Ouyang, Q. Liu, Y.Q. Huang, B. Jin, H.X. Gao, X. Luo, Z.W. Liang, An experimental and theoretical study on the effects of amine chain length on CO2 absorption performance, AlChE. J. 69 (4) (2023) e17960. [52] S. Delgado, A. Gaunand, C. Coquelet, R. Cadours, C. Volpi, A new reactive absorption model using extents of reaction and activities. II. Application to CO2 absorption into aqueous MDEA solutions, Chem. Eng. Sci. 287 (2024) 119759. |